3803 Group (Spec.H QzROM version)
PRELIMINARY
Notice: This is not a final specification.
Some parametric limits are subject to change.
WATCHDOG TIMER
The watchdog timer gives a mean of returning to the reset status
when a program cannot run on a normal loop (for example,
because of a software run-away). The watchdog timer consists of
an 8-bit watchdog timer L and an 8-bit watchdog timer H.
• Watchdog Timer Initial Value
Watchdog timer L is set to “FF16” and watchdog timer H is set to
“FF16” by writing to the watchdog timer control register (address
001E16) or at a reset. Any write instruction that causes a write
signal can be used, such as the STA, LDM, CLB, etc. Data can
only be written to bits 6 and 7 of the watchdog timer control
register. Regardless of the value written to bits 0 to 5, the above-
mentioned value will be set to each timer.
• Watchdog Timer Operations
The watchdog timer stops at reset and starts to count down by
writing to the watchdog timer control register (address 001E16).
An internal reset occurs at an underflow of the watchdog timer
H. The reset is released after waiting for a reset release time and
the program is processed from the reset vector address.
Accordingly, programming is usually performed so that writing
to the watchdog timer control register may be started before an
underflow. If writing to the watchdog timer control register is not
performed once, the watchdog timer does not function.
• Bit 6 of Watchdog Timer Control Register
• When bit 6 of the watchdog timer control register is “0”, the
MCU enters the stop mode by execution of STP instruction.
Just after releasing the stop mode, the watchdog timer restarts
counting(Note.). When executing the WIT instruction, the
watchdog timer does not stop.
• When bit 6 is “1”, execution of STP instruction causes an
internal reset. When this bit is set to “1” once, it cannot be
rewritten to “0” by program. Bit 6 is “0” at reset.
The following shows the period between the write execution to
the watchdog timer control register and the underflow of
watchdog timer H.
Bit 7 of the watchdog timer control register is “0”:
when XCIN = 32.768 kHz; 32 s
when XIN = 16 MHz; 65.536 ms
Bit 7 of the watchdog timer control register is “1”:
when XCIN = 32.768 kHz; 125 ms
when XIN = 16 MHz; 256 µs
Note. The watchdog timer continues to count even while waiting for a
stop release. Therefore, make sure that watchdog timer H does not
underflow during this period.
XCIN
“FF16” is set when
watchdog timer
control register is
written to.
Main clock division
ratio selection bits (Note)
XIN
“10”
“00”
“01”
1/16
Watchdog timer L (8)
“0”
“1”
Watchdog timer H (8)
Watchdog timer H count
source selection bit
Data bus
“FF16” is set when
watchdog timer
control register is
written to.
STP instruction function selection bit
STP instruction
RESET
Reset
circuit
Internal reset
Note: Any one of high-speed, middle-speed or low-speed mode is selected by bits 7 and 6 of the CPU mode register.
Fig 54. Block diagram of Watchdog timer
b7
b0
Watchdog timer control register
(WDTCON : address 001E16)
Watchdog timer H (for read-out of high-order 6 bit)
STP instruction function selection bit
0: Entering stop mode by execution of STP instruction
1: Internal reset by execution of STP instruction
Watchdog timer H count source selection bit
0: Watchdog timer L underflow
1: f(XIN)/16 or f(XCIN)/16
Fig 55. Structure of Watchdog timer control register
Rev.1.10 Nov 14, 2005 Page 61 of 91
REJ03B0166-0110