C5
=
2π
⋅
16
⋅
10
1
3⋅
22.1
⋅
10
3
= 0.45nF
C8
=
1
2 π⋅ 600 ⋅ 103
⋅ 22.1 ⋅ 103
= 12pF
SC4525A
Applications Information (Cont.)
(230)%PloafcVVteoche=thc(e1roc+sossom/vpGeωerPpnWf)rMs(e1a(q1t+ou+resns/zRceωyrEno,SQRF, CCF+.OZ1s),2b/eωtwn2 )een 10% and
Thermal Considerations
(4) Use the compensator pole, FP1, to cancel the ESR zero, For the power transistor inside the SC4525A, the
FZ.
(5)
TheGnP,WtMhe≈
pGaCrARa⋅mRSet,ers
of
theωpco≈mRp1CeOn,sation
neωtwZ o=rkRES1RCccoiOrnc,udiutPclotTiOsoTsnAPLlB=oSTsP, scCaPn+C,PbthSeWee+sswtiPmiBtScaThte+indPgaQlsofsosllPoSwW,s:and
bootstrap
can be calculated by
AC
R7
=
10 20
gm
C5
=
1
2 πFZ1
R7
C8
=
1
2 πFP1
R7
PC = D ⋅ VCESAT ⋅ IO
PSW
=
1
2
⋅
tS
⋅ VIN
⋅ IO
⋅ FSW
PBST
=D⋅
VBST
⋅
IO
40
PQ = VIN ⋅ 2mA
(10)
where gm=0.28mA/V is the EA gain of the SC4525A.
wswhietcrehPiVnDBgST=tisi(m1the−eoDBf)St⋅ThVseDuN⋅pIPpONlytvroanltsaigsteoarn(sdeteS
is the equivalent
Table 4).
Example: Determine the voltage compensator for an
800kHz, 12V to 3.3V/3A converter with 47uF ceramic
output capacitor.
PTIaNDbl=e(41..1Ty~p1ic.a3l)s⋅wI2Oit⋅cRhDiCng time
Input Voltage
Load Current
1A
2A
3A
Choose a loop gain crossover frequency of 80kHz, and
12V
12.5ns 15.3ns 18ns
p(r2elA0aqCc%u=eir−evoA2dof0Clct⋅F=laooCggm)−,eGp2aCce01AnoRnd⋅mSslao⋅pF2tgoePπ1Frn1=GCgsC6aCaO01AtiRo0⋅nVkVrSFaOHBzt⋅zeF2.rCπoFiFs1raConCmdO p⋅EoVqVFluOeBaatitonFZ1(=91),6ktHhez
24V
22ns
25ns
28ns
28V
25.3ns 28ns
31ns
AC =
Then
−A20C
the
⋅=log− 2280⋅ 4⋅.l11o⋅g102−38⋅ 2⋅ π4⋅.1180⋅⋅110013−3⋅ 47⋅P2⋅T1Oπ0T−A⋅6L8⋅=013.P.⋅031C0=+131P9⋅Sd4WB7+⋅
c1o9 mpensator parameters arePC = D ⋅ VCESAT ⋅ IO
1PB0S−T6+In⋅P13aQ.d.03diPt=iQo1n=9,VtdIhNBe⋅
quiescent
2mA
current
loss
is
(11)
R7
C5
=
=
20πR.21⋅8710⋅6=120⋅010−03.321=1⋅833011⋅ .1.2148090k⋅ 1−033
=
=
31.8k
0.31nF
PSW
=
1
2
⋅
tS
⋅
VIN
⋅ IO
The
⋅ FSW
total
power
loss
of
the
SC4525A
is
therefore
P TOTAL = PC + P SW + PB ST + PQ
(12)
C8
=
C5 =
2 π⋅ 600
1
2⋅ 1π0 3⋅
1
1⋅ 361.⋅41⋅01033⋅
=381.5.4pF⋅
10
3
=P0BS.T31=nDF⋅ VBST
⋅ IO
40
Vo
Vc
=
C8
(1 + s
/=GωP2pW)M(π1(1⋅+6+s0s/R0ωEnS⋅QR1C+0Os)132
⋅
/
ω3n21) .4
⋅ 103
P=D
8=.5(1pF−
D)
⋅
VD
⋅
IO
TtohtealtepmPoCwp=eerrDadt⋅uiVsrsCeiEprSiAasTtei⋅ooIOnf
the SC4525A PisQth=eVpINro⋅ 2dmucAt of the
(Equation
(12))
and
q
JA
(36oC/W),
wfohr itchhePisSSOtWhICe=-t812heE⋅rDtmSPa⋅plVaiImNck⋅pIaeOgd⋅eaF.nSWce from junction to ambient
SCareGoelPmeWlMcipst≈teeRVVGnd7ocCs=AR=ai3⋅nRt1o(ST1.r,a4+bpk,laseCr/a55=Gmω. 0PAωpeW.p)3tMM(e≈13(raRn1s+1CtFh+fO,soCa,s/rnARωvdDEanSCrQRpi8Cor=+ouOω1gss)Z02rPt=payI/NRmFpωDEifS1coRni2=sCa)rO(alt1,lahs.p1eopd~alive1casa.ii3gtlai)nob⋅.nIl2Oes
⋅
RDI1Ct2i5soCnojPutBnSrTcet=ciooDnm⋅tmVeBmeSnTpd⋅ee4rIaOd0tutore.oInpetrhaeteaptphleicSatCio45n2s5wAithabhoigvhe
input voltage and high output current, the switching
AC
upRpa7roa=nm1rg0eemt2q0eurse.st
C5
=
GP1WM ≈
2 πFZ1 R7
for detailed
R,
GCA ⋅RS
calculation of the
ωp
≈
1
RC O
,
compensator frequePnDcy=m(1a−y Dn)e⋅eVdDt⋅oIObe reduced
ωZ
=
1
requirement.
,
R ESRC O
PIND = (1.1
~ 1.3) ⋅ I2O
⋅ RDC
to
meet
the
thermal
C8
=
1
AC
2RπF7P1=R71g0m20
14
C5 = 1