

SANYO Semiconductors DATA SHEET

LB11620GP - Monolithic Digital IC Brushless Motor Driver

Overview

The LB11620GP is a direct PWM drive pre-driver IC that is optimal for three-phase power brushless motors. A motor driver circuit with the desired output capability (voltage and current) can be implemented by adding discrete transistors or other power devices to the outputs of this IC. Since the LB11620GP is provided in a miniature package, it is also appropriate for use with miniature motors as well.

Features

- Three-phase bipolar drive
- Direct PWM drive (input of either a control voltage or a variable-duty PWM signal)
- Built-in forward/reverse switching circuit
- 5V regulator output (VREG pin)
- Built-in current limiter circuit (0.25V (typical) reference voltage)
- Built-in under voltage protection circuit
- Built-in automatic recovery type constraint protection circuit (ON: OFF=1: 18) with protection operating state discrimination output (RD pin)
- Hall signal pulse outputs

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	V _{CC} max	V _{CC} pin	18	V
Output current	I _O max	UL, VL, WL, UH, VH, WH pins	30	mA
Allowable power dissipation	Pd max	*Mounted on a circuit board.	1.0	W
Operating temperature	Topr		-30 to +100	°C
Storage temperature	Tstg		-55 to +150	°C

* Mounted on a circuit board: 40.0mm×50.0mm×0.8mm, glass epoxy board.

Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.

Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Semiconductor Co., Ltd. http://semicon.sanyo.com/en/network

LB11620GP

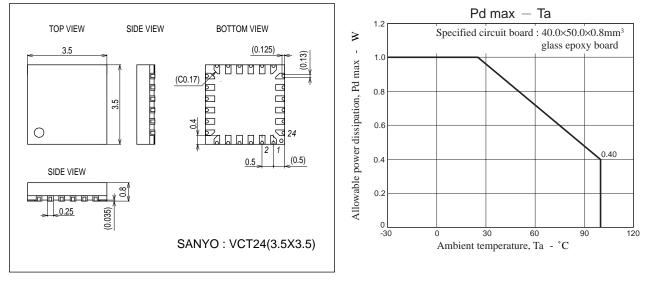
Recommended Operating Ranges at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range 1-1	V _{CC} 1-1	V _{CC} pin	8 to 17	V
Supply voltage range 1-2	V _{CC} 1-2	V_{CC} pin, with V_{CC} shorted to VREG	4.5 to 5.5	V
Output current	IO	UL, VL, WL, UH, VH, WH pins	25	mA
5 V constant voltage output current	IREG		-30	mA
HP pin voltage	VHP		0 to 17	V
HP pin output current	IHP		0 to 15	mA
RD pin voltage	VRD		0 to 17	V
RD pin output current	IRD		0 to 15	mA

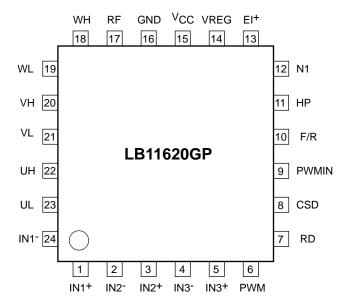
Electrical Characteristics at Ta = 25° C, V_{CC} = 12V

Parameter	Symbol Conditions			Ratings	1	Unit
i aranieter	Cymbol		min	typ	max	Offic
Supply voltage 1	I _{CC} 1			12	16	mA
5V constant voltage output (VREG pi	in)					
Output voltage	VREG		4.7	5.0	5.3	V
Line regulation	∆VREG1	V _{CC} = 8 to 17V		40	100	mV
Load regulation	∆VREG2	I _O = -5 to -20mA		10	30	mV
Temperature coefficient	∆VREG3	Design target		0		mV/∘C
Low-voltage protection circuit (VREC	G pin)					
Operating voltage	VSDL		3.5	3.7	3.9	V
Clear voltage	VSDH		3.95	4.15	4.35	V
Hysteresis	ΔVSD		0.3	0.45	0.6	V
Output Block						
Output voltage 1-1	VOUT ¹⁻¹	Low level I _O = 400µA		0.2	0.5	V
Output voltage 1-2	VOUT ¹⁻²	Low level I _O = 10mA		0.9	1.2	V
Output voltage 2	V _{OUT} 2	High level I _O = -20mA	V _{CC} -1.1	V _{CC} -0.9		V
Output leakage current	lOleak				10	μΑ
Hall Amplifier Block		-	•			
Input bias current	IHB (HA)		-2	-0.5		μΑ
Common-mode input voltage range 1	VICM1	When a Hall effect sensor is used	0.5		V _{CC} -2.0	V
Common-mode input voltage range 2	VICM2	For single-sided input bias (Hall IC application)	0		VCC	V
Hall input sensitivity			80			mVp-p
Hysteresis	∆V _{IN} (HA)		15	24	40	mV
Input voltage low \rightarrow high	VSLH (HA)		5	12	20	mV
Input voltage high \rightarrow low	VSHL (HA)		-20	-12	-5	mV
PWM Oscillator (PWM pin)		-	•			
High-level output voltage	V _{OH} (PWM)		2.75	3.0	3.25	V
Low-level output voltage	V _{OL} (PWM)		1.2	1.35	1.5	V
External capacitor charge current	ICHG	VPWM = 2.1V	-120	-90	-65	μΑ
Oscillator frequency	f (PWM)	C = 2000pF		22		kHz
Amplitude	V (PWM)		1.4	1.6	1.9	Vp-p
El+ pin	•	-	•			
Input bias current	IB (CTL)		-1		1	μA
Common-mode input voltage range	VICM		0		VREG-1.7	V
Input voltage 1	VCTL1	Output duty 100%		3.0		V
Input voltage 2	VCTL2	Output duty 0%		1.35		V
Input voltage 1L	VCTL1L	Design target value. When VREG = 4.7V, 100%		2.82		V
Input voltage 2L	VCTL2L	Design target value. When VREG = 4.7V, 0%		1.29		V
Input voltage 1H	VCTL1H	Design target value. When VREG = 5.3V, 100%		3.18		V
Input voltage 2H	VCTL2H	Design target value. When VREG = 5.3V, 0%		1.44		V

Continued on next page


LB11620GP

Parameter	Cumbal	Symbol Conditions		Ratings			
Falameter	Symbol Conditions		min	typ max		Unit	
HP pin							
Output saturation voltage	VHPL	I _O = 10mA		0.2	0.5	V	
Output leakage current	IHPleak	V _O = 18V			10	μA	
CSD oscillator (CSD pin)			· · ·				
High-level output voltage	V _{OH} (CSD)		2.7	3.0	3.3	V	
Low-level output voltage	V _{OL} (CSD)		0.7	1.0	1.3	V	
External capacitor charge current	ICHG1	VCSD = 2V	-3.15	-2.5	-1.85	μA	
External capacitor discharge current	ICHG2	VCSD = 2V	0.1	0.14	0.18	μA	
Charge/discharge current ratio	RCSD	Charge current /discharge current	15	18	21	Times	
RD pin			· · ·				
Low-level output voltage	VRDL	I _O = 10mA		0.2	0.5	V	
Output leakage current	IL (RD)	V _O = 18V			10	μA	
Current limiter circuit (RF pin)		·		·	·		
Limiter voltage	VRF	RF-GND	0.225	0.25	0.275	V	
PWMIN pin			· · ·				
Input frequency	f (PI)				60	kHz	
High-level input voltage	V _{IH} (PI)		2.0		VREG	V	
Low-level input voltage	V _{IL} (PI)		0		1.0	V	
Input open voltage	V _{IO} (PI)		VREG-0.5		VREG	V	
Hysteresis	V _{IS} (PI)		0.2	0.25	0.4	V	
High-level input current	I _{IH} (PI)	VPWMIN = VREG	-10	0	10	μA	
Low-level input current	I _{IL} (PI)	VPWMIN = 0V	-130	-90		μA	
F/R pin		·		·	·		
High-level input voltage	V _{IH} (FR)		2.0		VREG	V	
Low-level input voltage	V _{IL} (FR)		0		1.0	V	
Input open voltage	V _{IO} (FR)		VREG-0.5		VREG	V	
Hysteresis	V _{IS} (FR)		0.2	0.25	0.4	V	
High-level input current	I _{IH} (FR)		-10	0	10	μA	
Low-level input current	I _{IL} (FR)		-130	-90		μA	
N1 pin	·		· ·	•	•		
High-level input voltage	V _{IH} (N1)		2.0		VREG	V	
Low-level input voltage	V _{IL} (N1)		0		1.0	V	
Input open voltage	V _{IO} (N1)		VREG-0.5		VREG	V	
High-level input current	I _{IH} (N1)	VN1 = VREG	-10	0	10	μA	
Low-level input current	I _{IL} (N1)	VN1 = 0V	-130	-100		μA	


Package Dimensions

unit : mm (typ)

3322A

Pin Assignment

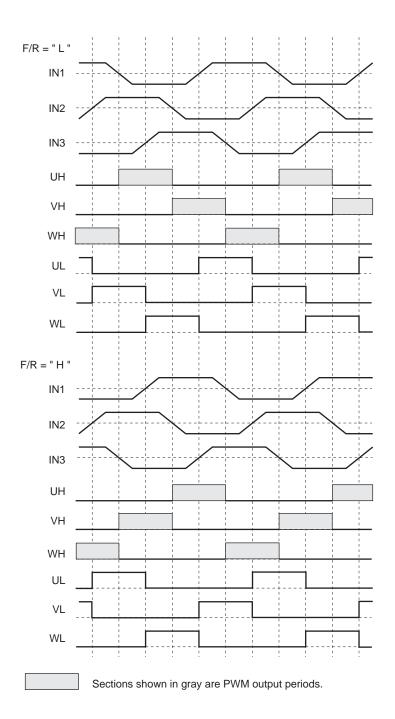
• Three-Phase Logic Truth Table (IN = "H" indicates the state where $IN^+ > II$	N-)
---	-----

	F/R = "L"			F/R="H"			Output	
	IN1	IN2	IN3	IN1	IN2	IN3	PWM	
1	Н	L	Н	L	Н	L	VH	UL
2	Н	L	L	L	Н	Н	WH	UL
3	Н	Н	L	L	L	Н	WH	VL
4	L	Н	L	Н	L	Н	UH	VL
5	L	Н	Н	Н	L	L	UH	WL
6	L	L	Н	Н	Н	L	VH	WL

• PWMIN pin

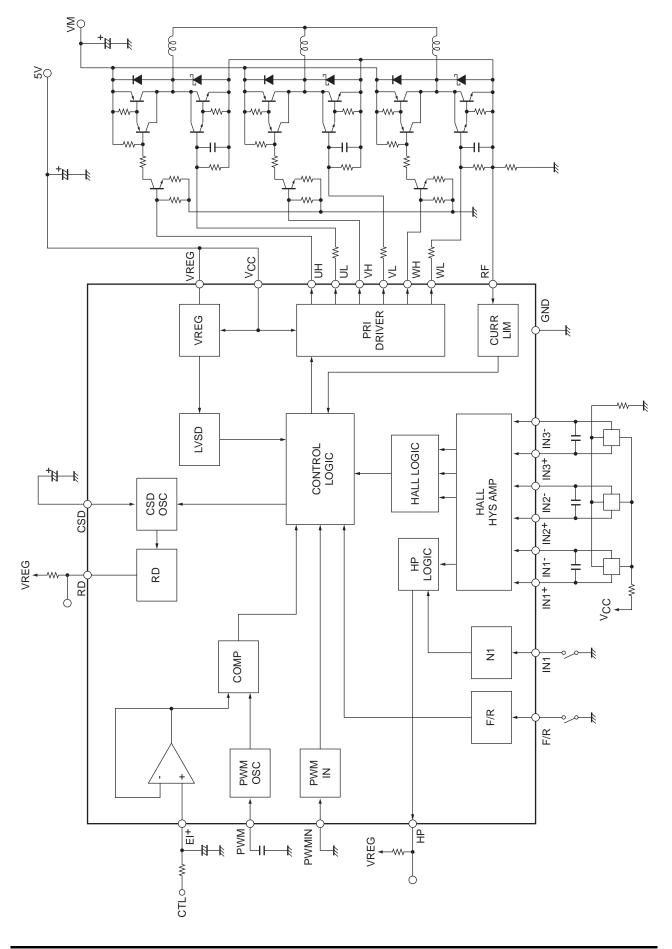
Input state	State
High or open	Output off
Low	Output on

If the PWM pin is not used, the input must be held at the low level.

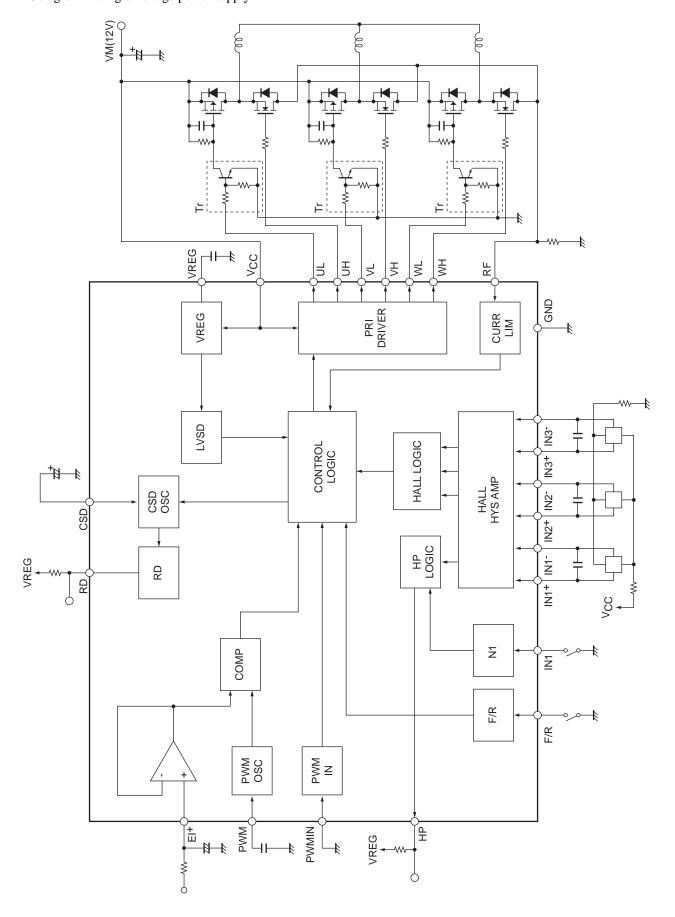

• N1 pin

Input state	HP output
High or open	Three Hall sensor synthesized output
Low	Single Hall sensor output

Explanation of Pin Functions

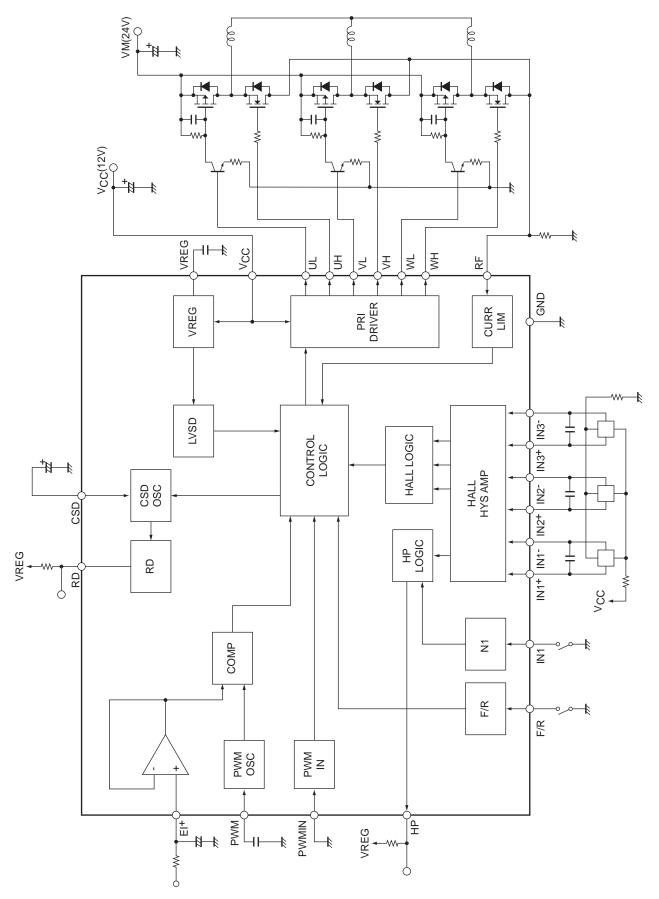

Pin No.	Pin	Description				
1, 24	IN1+, IN1-	Hall sensor inputs from each motor phase.				
3, 2	IN2+, IN2-	The logic high state indicates that $IN^+ > IN^-$.				
5, 4	IN3+, IN3-	If inputs are provided by a Hall effect sensor IC, the common-mode input range is expanded by biasing either the + or -				
		input.				
6	PWM	Functions as both the PWM oscillator frequency setting pin and the initial reset pulse setting pin. Connect a capacitor				
		between this pin and ground.				
7	RD	Lock (motor constrained) detection state output. This output is turned on when the motor is turning and off when the lock				
		protection function detects that the motor has been stopped. This is an open collector output.				
8	CSD	Sets the operating time for the lock protection circuit.				
		Connect a capacitor between this pin and ground. Connect this pin to ground if the lock protection function is not used.				
9	PWMIN	PWM pulse signal input. The output goes to the drive state when this pin is low and to the off state when this pin is high				
		or open. To use this pin for control, a CTL amplifier input such that the TOC pin voltage goes to the 100% duty state				
		must be provided.				
10	F/R	Forward/reverse control input				
11	HP	Hall signal output (HP output). This provides either a single Hall sensor output or a synthesized 3-sensor output.				
12	N1	Hall signal output (HP output) selection				
13	El+	CTL amplifier + (no inverting) input. The PWMIN pin must be held at the low level to use this input for motor control				
14	VREG	5V regulator output (Used as the control circuit power supply. A low-voltage protection circuit is built in.)				
		Connect a capacitor between this pin and ground for stabilization.				
15	V _{CC}	Power supply. Connect a capacitor between this pin and ground to prevent noise and other disturbances from affecting				
		this IC.				
16	GND	Ground				
17	RF	Output current detection. The current detection resistor (Rf) voltage is sensed by the RF pin to implement current				
		detection.				
		The maximum output current is set by RF to be IOUT = 0.25/Rf.				
22	UH	Outputs (PWM outputs).				
20	VH	These are push-pull outputs.				
18	WH					
23	UL	Outputs				
21	VL	These are push-pull outputs.				
19	WL					

Hall Sensor Signal Input/Output Timing Chart

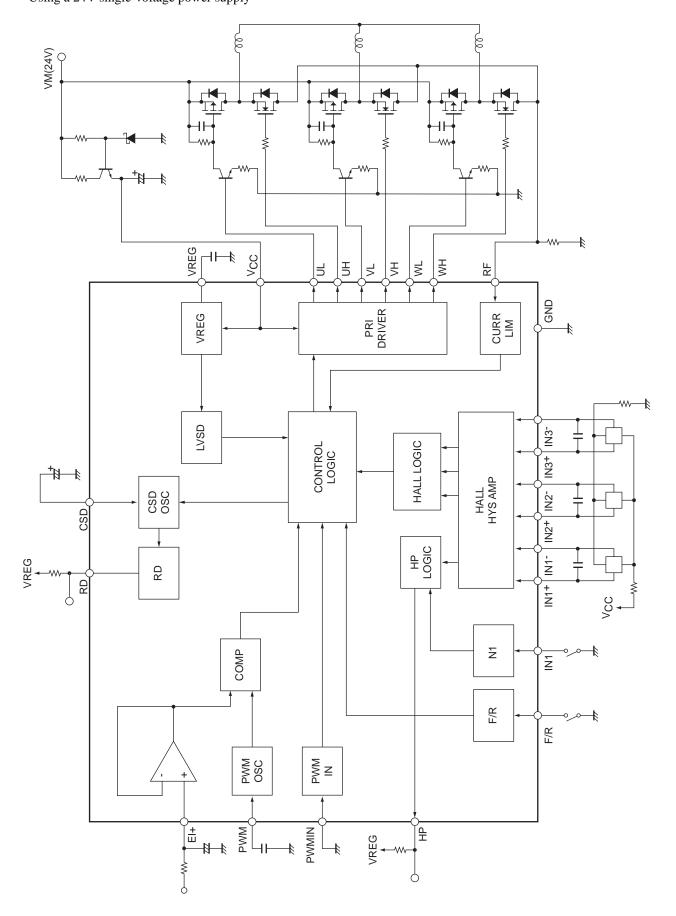

Block Diagram and Application Example 1

Bipolar transistor drive (high side PWM) Using a 5V power supply

Application Example 2


54 MOS transistor drive (low side PWM) Using a 12V single-voltage power supply

Application Example 3


MOS transistor drive (low side PWM)

Using a $V_{CC} = 12V$, VM = 24V power supply system

Application Example 4

MOS transistor drive (low side PWM) Using a 24V single-voltage power supply

Pin Functions

PIN No.	PIN name	Function	Equivalent circuit
24	IN1-	Hall input pin.	Vc <u>c</u>
1	IN1+	IN+>IN- to "H", $IN+ to "L".$	
2	IN2-	Connect the capacitor between IN+ and IN-	
3	IN2+	when the noise of the hall signal becomes a	
4	IN3-	problem.	
5	IN3+		
6	PWM	Functions as both the PWM oscillator	VREG
		frequency setting pin and the initial reset	
		pulse setting pin. Connect a capacitor	\bigcirc \bigcirc
		between this pin and ground. It is possible to	
		set it to about 22kHz with C=2000pF.	
7	RD	Lock (motor constrained) detection state	
1	KU	output. This output is turned on when the	VREG
		motor is turning and off when the lock	
		protection function detects that the motor has	() (7)(1)
		been stopped.	
11	HP	Hall signal output pin.	
		Two kinds of outputs can be selected by	
		setting the N1 pin.	
8	CSD	Sets the operating time for the lock protection	VREG
		circuit.	
		Connect a capacitor between this pin and	
		ground. Connect this pin to ground if the lock	
		protection function is not used.	
			the the the the
9	PWMIN	PWM pulse signal input. The output goes to	VREG
		the drive state when this pin is low and to the	
		off state when this pin is high or open. To use	
		this pin for control, a CTL amplifier input such	50kΩ ≩ ★
		that the TOC pin voltage goes to the 100%	
		duty state must be provided.	
10	F/R	Forward/reverse control input.	
			the the the the
12	N1	Hall signal output (HP output) selection.	VPEC
12			VREG
			50kΩ ξ 👗

Continued on next page

LB11620GP

	preceding page.		
PIN No.	PIN name	Function	Equivalent circuit
13	El+	CTL amplifier + (no inverting) input. The PWMIN pin must be held at the low level to use this input for motor control.	
14	VREG	Stabilizing supply output pin. (5V output) Connect a capacitor between this pin and ground for stabilization. (about 0.1µF level)	
15	VCC	Power supply. Connect a capacitor between this pin and ground to prevent noise and other disturbances from affecting this IC.	
16	GND	Ground	
17	RF	Output current sensing pin. The low resistance is connected between RF and GND. It sets it by output maximum current IOUT=0.25/Rf.	VREG
18 19 20 21 22 23	WH WL VH UH UL	Output pin. (Driving external TR output) The duty is controlled on UH, VH, and WH side.	V _{CC} 50kΩ 18 (19 20) (21 22 23) (21 22 23)

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of February, 2011. Specifications and information herein are subject to change without notice.