LA4538M

Ripple Filter-Provided Stereo Power Amplifier for 1.5V Headphone Stereos

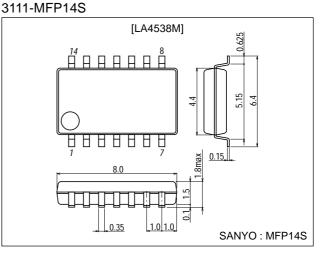
Features

- Low current dissipation.
- Excellent reduced voltage characteristics.
- Minimum number of external parts required.
- On-chip power switch function.
- Power amplifier section

Output power 8mW typ ($V_{CC}=1.5V$, $R_L=16\Omega$, f=1kHz, THD=10%) Ripple rejection 46dB typ ($V_{CC}=1.0V$, $V_{P}=-30dBm$

- Ripple rejection 46dB typ (V_{CC}=1.0V, V_R=-30dBm, f_R =100Hz)
- Ripple filter section

Ripple rejection 39dB typ (V_{CC} =1.0V, V_R =-35dBm, f_R =100Hz) Less output voltage loss


Pin 8 can be used to perform the muting current.

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Package Dimensions

unit:mm

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max	Quiescent	4.5	V
Maximum output current	1 ₀ 7	Pin 7 flow-out current	5.0	mA
Allowable power dissipation	Pd max		300	mW
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-40 to +125	°C

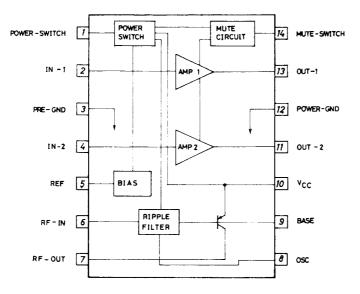
Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended oprating voltage	VCC		1.5	V
Operating voltage range	V _{CC} op		0.9 to 4.0	V
Recommended load resistance	RL		16 to 32	Ω

Operating Characteristics at $Ta = 25^{\circ}C$, $R_L=16\Omega$, $Rg=600\Omega$, See specified Test Circuit.

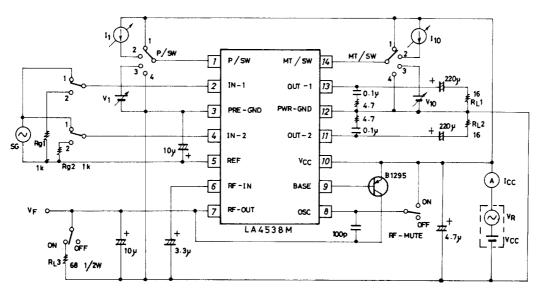
Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	Unit
Quiescent current	lcco1	V_{CC} =1.20V, quiescent, RL3 \rightarrow OFF		4.5	7.0	mA
	lcco2	V_{CC} =2.50V, pin 14 \rightarrow GND, RL3 \rightarrow OFF		1.5	2.5	mA
	lcco3	$V_{CC}\text{=}2.50V, \text{pin} \ 1 \rightarrow \text{GND}, \text{R}_L3 \rightarrow \text{OFF}$			1.0	μΑ
Voltage gain	VG	V _{CC} =0.90V, f=1kHz, V _O =-20dBm	27.5	29	31.5	dB
Voltage gain difference	ΔVG	V _{CC} =0.90V, f=1kHz, V _O =-20dBm			1.0	dB

Continued on next page.

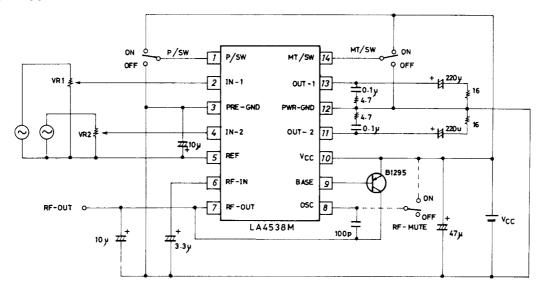

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges,or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co., Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

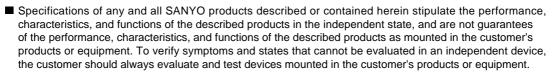
Continued from preceding page.


Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	Unit
Total harmonic distortion	THD	V _{CC} =1.20V, f=1kHz, P _O =0.5mW		0.9	1.5	%
Output power	PO	V _{CC} =1.50V, f=1kHz, THD=10%	5	8		mW
Crosstalk	CT	V_{CC} =1.20V, f=100Hz, Rg=1k Ω , V_{O} =-20dB	40	45		dB
Ripple rejection (amplifier section)	SVRR1	$V_{CC}\text{=}1.00\text{V},\text{f}\text{=}100\text{Hz},\text{Rg}\text{=}1\text{k}\Omega,\text{V}_{R}\text{=}\text{-}30\text{dBm},\text{BPF}\text{=}100\text{Hz}$	40	46		dB
Ripple rejection (filter section)	SVRR2	V _{CC} =1.00V, f=100Hz, V _R =-35dBm	34	39		dB
Output noise voltage	V _{NO}	V_{CC} =2.50V, Rg=1k Ω , BPF=20Hz to 20kHz		55	80	μV
Power on current sensitivity	I _{1(on)}	V_{CC} =0.85V, Vpin5 \geq 0.5V		0.1	1.0	μA
Power off voltage sensitivity	V _{1(off)}	V_{CC} =0.85V, Vpin5 \leq 0.1V	0.5	0.6		V
Muting off current sensitivity	I _{14(off)}	V_{CC} =0.85V, Vpin5 \geq 0.5V		0.1	1.0	μA
Muting on voltage sensitivity	V _{14(on)}	V_{CC} =0.85V, Vpin5 \leq 0.1V	0.5	0.6		V
Ripple filter output voltage	VF	V _{CC} =1.00V, R _L =68Ω	0.90	0.94		V

Equivalent Circuit Block Diagram



Test Circuit


Unit (resistance: Ω, capacitance: F)

Sample Application Circuit

Unit (resistance: Ω , capacitance: F)

- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 2000. Specifications and information herein are subject to change without notice.