### INTEGRATED CIRCUITS

## DATA SHEET

# NE/SE5539 High frequency operational amplifier

Product data
Supersedes data of 2001 Aug 03
File under Integrated Circuits, IC11 Data Handbook





## High frequency operational amplifier

**NE/SE5539** 

#### **DESCRIPTION**

The NE/SE5539 is a very wide bandwidth, high slew rate, monolithic operational amplifier for use in video amplifiers, RF amplifiers, and extremely high slew rate amplifiers.

Emitter-follower inputs provide a true differential input impedance device. Proper external compensation will allow design operation over a wide range of closed-loop gains, both inverting and non-inverting, to meet specific design requirements.

#### **FEATURES**

Bandwidth

- Unity gain: 350 MHz - Full power: 48 MHz - GBW: 1.2 GHz at 17 dB

Slew rate: 600/Vµs A<sub>VOL</sub>: 52 dB typical

Low noise: 4 nV√Hz typical

#### **PIN CONFIGURATION**

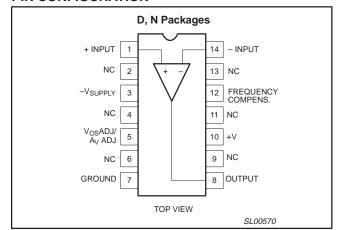



Figure 1. Pin Configuration

#### **APPLICATIONS**

- High speed datacom
- Video monitors & TV
- Satellite communications
- Image processing
- RF instrumentation & oscillators
- Magnetic storage

#### ORDERING INFORMATION

| DESCRIPTION                               | TEMPERATURE RANGE | ORDER CODE | DWG #    |
|-------------------------------------------|-------------------|------------|----------|
| 14-Pin Plastic Dual In-Line Package (DIP) | 0 °C to +70 °C    | NE5539N    | SOT27-1  |
| 14-Pin Plastic Small Outline (SO) package | 0 °C to +70 °C    | NE5539D    | SOT108-1 |
| 14-Pin Plastic Dual In-Line Package (DIP) | −55 °C to +125 °C | SE5539N    | SOT27-1  |

#### ABSOLUTE MAXIMUM RATINGS1

| SYMBOL              | PARAMETER                                                                                        | RATING                  | UNITS    |
|---------------------|--------------------------------------------------------------------------------------------------|-------------------------|----------|
| V <sub>CC</sub>     | Supply voltage                                                                                   | ±12                     | V        |
| P <sub>D(max)</sub> | Maximum power dissipation; T <sub>amb</sub> = 25 °C (still-air) <sup>2</sup> N package D package | 1.45<br>0.99            | W<br>W   |
| T <sub>amb</sub>    | Operating temperature range<br>NE5539D, NE5539N<br>SE5539N                                       | 0 to +70<br>-55 to +125 | °C<br>°C |
| T <sub>stg</sub>    | Storage temperature range                                                                        | -65 to +150             | °C       |
| Tj                  | Max junction temperature                                                                         | +150                    | °C       |
| T <sub>sld</sub>    | Lead soldering temperature (10 sec max)                                                          | +230                    | °C       |

#### NOTES:

- 1. Differential input voltage should not exceed 0.25 V to prevent excessive input bias current and common-mode voltage 2.5 V. These voltage limits may be exceeded if current is limited to less than 10 mA.
- 2. Derate above 25 °C, at the following rates: N package at 11.6 mW/°C

  - D package at 7.9 mW/°C

## High frequency operational amplifier

NE/SE5539

#### **EQUIVALENT CIRCUIT**

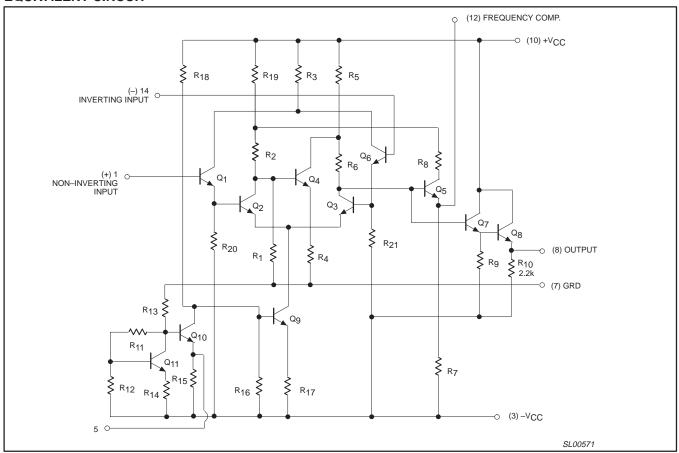



Figure 2. Equivalent Circuit

## High frequency operational amplifier

NE/SE5539

#### DC ELECTRICAL CHARACTERISTICS

 $V_{CC}$  =  $\pm 8$  V,  $T_{amb}$  = 25  $^{\circ}C;$  unless otherwise specified.

|                          |                              |                                                                            |                                    |      | SE5539 |      |      | NE5539 |      |       |  |
|--------------------------|------------------------------|----------------------------------------------------------------------------|------------------------------------|------|--------|------|------|--------|------|-------|--|
| SYMBOL                   | PARAMETER                    | TEST CONDIT                                                                | TIONS                              | MIN  | TYP    | MAX  | MIN  | TYP    | MAX  | UNITS |  |
|                          |                              | V <sub>O</sub> = 0 V;                                                      | Over temp.                         |      | 2      | 5    |      |        |      |       |  |
| V <sub>OS</sub>          | Input offset voltage         | $R_S = 100 \Omega$                                                         | T <sub>amb</sub> = 25 °C           |      | 2      | 3    |      | 2.5    | 5    | m∨    |  |
| ΔV <sub>OS</sub> /ΔT     |                              |                                                                            |                                    |      | 5      |      |      | 5      |      | μV/°C |  |
|                          | lanut effect coment          |                                                                            | Over temp.                         |      | 0.1    | 3    |      |        |      |       |  |
| los                      | Input offset current         |                                                                            | T <sub>amb</sub> = 25 °C           |      | 0.1    | 1    |      |        | 2    | μΑ    |  |
| $\Delta I_{OS}/\Delta T$ |                              |                                                                            |                                    |      | 0.5    |      |      | 0.5    |      | nA/°C |  |
|                          | Input bias current           |                                                                            | Over temp.                         |      | 6      | 25   |      |        |      |       |  |
| I <sub>B</sub>           | input bias current           |                                                                            | T <sub>amb</sub> = 25 °C           |      | 5      | 13   |      | 5      | 20   | μΑ    |  |
| $\Delta I_B/\Delta T$    |                              |                                                                            |                                    |      | 10     |      |      | 10     |      | nA/°C |  |
| CMRR                     | Common mode rejection ratio  | $F = 1 \text{ kHz}; R_S = 100 \Omega$                                      | 2; V <sub>CM</sub> ±1.7 V          | 70   | 80     |      | 70   | 80     |      | dB    |  |
| CIVIKK                   | Common mode rejection ratio  |                                                                            | Over temp.                         | 70   | 80     |      |      |        |      | uБ    |  |
| R <sub>IN</sub>          | Input impedance              |                                                                            |                                    |      | 100    |      |      | 100    |      | kΩ    |  |
| R <sub>OUT</sub>         | Output impedance             |                                                                            |                                    |      | 10     |      |      | 10     |      | Ω     |  |
|                          |                              | $R_L = 150 \Omega$ to GND                                                  | +Swing                             |      |        |      | +2.3 | +2.7   |      | V     |  |
|                          |                              | and 470 $\Omega$ to $-V_{CC}$                                              | -Swing                             |      |        |      | -1.7 | -2.2   |      | l     |  |
| V                        | Output valtage eving         | $R_L = 25 \Omega$ to GND                                                   | +Swing                             | +2.3 | +3.0   |      |      |        |      | V     |  |
| V <sub>OUT</sub>         | Output voltage swing         | Over temp.                                                                 | -Swing                             | -1.5 | -2.1   |      |      |        |      | ľ     |  |
|                          |                              | $R_L = 25 \Omega$ to GND                                                   | +Swing                             | +2.5 | +3.1   |      |      |        |      | V     |  |
|                          |                              | T <sub>amb</sub> = 25 °C                                                   | -Swing                             | -2.0 | -2.7   |      |      |        |      | l     |  |
|                          | Positivo aupply aurrent      | $V_0 = 0 \text{ V, } R_1 = \infty; 0$                                      | Over temp.                         |      | 14     | 18   |      |        |      | mA    |  |
| I <sub>CC+</sub>         | Positive supply current      | $V_0 = 0 \text{ V}, R_1 = \infty; T_0$                                     | <sub>amb</sub> = 25 °C             |      | 14     | 17   |      | 14     | 18   | IIIA  |  |
|                          | Negative eventy everent      | $V_0 = 0 \text{ V, R}_1 = \infty$ ;                                        | Over temp.                         |      | 11     | 15   |      |        |      |       |  |
| I <sub>CC</sub> _        | Negative supply current      | $V_0 = 0 \text{ V}, R_1 = \infty; T_2$                                     | <sub>amb</sub> = 25 °C             |      | 11     | 14   |      | 11     | 15   | mA    |  |
| PSRR                     | Dower oupply rejection ratio | $\Delta V_{CC} = \pm 1 \text{ V; Ov}$                                      | er temp.                           |      | 300    | 1000 |      |        |      |       |  |
| FORK                     | Power supply rejection ratio | $\Delta V_{CC} = \pm 1 \text{ V; T}_{am}$                                  | <sub>ib</sub> = 25 °C              |      |        |      |      | 200    | 1000 | μV/V  |  |
|                          |                              | $V_{O} = +2.3 \text{ V}, -$<br>R <sub>L</sub> = 150 $\Omega$ to GND, 4     | 1.7 V;<br>70 Ω to –V <sub>CC</sub> |      |        |      | 47   | 52     | 57   | dB    |  |
|                          |                              | $V_0 = +2.3 \text{ V}, -1.7 \text{ V};$                                    | Over temp.                         |      |        |      |      |        |      | 40    |  |
| $A_{VOL}$                | Large signal voltage gain    | $R_L = 2 \Omega$ to GND                                                    | T <sub>amb</sub> = 25 °C           |      |        |      | 47   | 52     | 57   | dB    |  |
|                          |                              | $V_O = +2.5 \text{ V}, -2.0 \text{ V};$<br>$R_L = 2 \Omega \text{ to GND}$ | Over temp.                         | 46   |        | 60   |      |        |      | dB    |  |
|                          |                              | $R_L = 2 \Omega$ to GND                                                    | T <sub>amb</sub> = 25 °C           | 48   | 53     | 58   |      |        |      | UD.   |  |

## High frequency operational amplifier

NE/SE5539

#### DC ELECTRICAL CHARACTERISTICS

 $V_{CC}$  = ±6 V,  $T_{amb}$  = 25  $^{\circ}C;$  unless otherwise specified.

| CVMDOL           | DADAMETER                    | TEC                           | CONDITIONS                  |                          |      | SE5539 |      | LINUTC |
|------------------|------------------------------|-------------------------------|-----------------------------|--------------------------|------|--------|------|--------|
| SYMBOL           | PARAMETER                    | IE9                           | TEST CONDITIONS             |                          |      |        |      | UNITS  |
| V                | Input offset voltage         |                               |                             | Over temp.               |      | 2      | 5    | mV     |
| Vos              | Input onset voltage          |                               |                             | T <sub>amb</sub> = 25 °C |      | 2      | 3    | IIIV   |
| laa              | Input offset current         |                               |                             | Over temp.               |      | 0.1    | 3    | μА     |
| los              | input onset current          |                               |                             | T <sub>amb</sub> = 25 °C |      | 0.1    | 1    | μΑ     |
| 1_               | Input bias current           |                               |                             | Over temp.               |      | 5      | 20   | μА     |
| I <sub>B</sub>   | Input bias current           |                               |                             | T <sub>amb</sub> = 25 °C |      | 4      | 10   | μΑ     |
| CMRR             | Common-mode rejection ratio  | V <sub>CM</sub> = ±           | 1.3 V; R <sub>S</sub> = 100 | Ω                        | 70   | 85     |      | dB     |
| loo              | Positive supply current      |                               |                             | Over temp.               |      | 11     | 14   | mA     |
| Icc+             | Positive supply current      |                               | T <sub>amb</sub> = 25 °C    |                          | 11   | 13     | IIIA |        |
| laa              | Negative supply current      |                               |                             | Over temp.               |      | 8      | 11   | mA     |
| Icc-             | Negative supply current      |                               |                             | $T_{amb} = 25^{\circ} C$ |      | 8      | 10   | IIIA   |
| PSRR             | Power supply rejection ratio | $\Delta V_{CC} = \pm$         | 1 \/                        | Over temp.               |      | 300    | 1000 | μV/V   |
| FORK             | Power supply rejection ratio | $\nabla ACC = T$              |                             | T <sub>amb</sub> = 25 °C |      |        |      | μν/ν   |
|                  |                              |                               | Over temp.                  | +Swing                   | +1.4 | +2.0   |      |        |
| \/               | Output voltage swing         | $R_L = 150 \Omega$ to GND     | Over temp.                  | -Swing                   | -1.1 | -1.7   |      | V      |
| V <sub>OUT</sub> | Output voltage swiftg        | and 390 $\Omega$ to $-V_{CC}$ | T 25 °C                     | +Swing                   | +1.5 | +2.0   |      | ]      |
|                  |                              |                               | T <sub>amb</sub> = 25 °C    | -Swing                   | -1.4 | -1.8   |      |        |

## High frequency operational amplifier

NE/SE5539

#### **AC ELECTRICAL CHARACTERISTICS**

 $V_{CC}$  =  $\pm 8$  V,  $R_L$  = 150  $\Omega$  to GND and 470  $\Omega$  to  $-V_{CC}$ , unless otherwise specified.

| CVMDOL          | DADAMETED              | TEST CONDITIONS                     |     | SE5539 |     |     | NE5539 |     | UNITS  |
|-----------------|------------------------|-------------------------------------|-----|--------|-----|-----|--------|-----|--------|
| SYMBOL          | PARAMETER              | TEST CONDITIONS                     | MIN | TYP    | MAX | MIN | TYP    | MAX | UNIIS  |
| BW              | Gain bandwidth product | $A_{CL} = 7, V_O = 0.1 V_{P-P}$     |     | 1200   |     |     | 1200   |     | MHz    |
|                 | Small signal bandwidth | $A_{CL} = 2$ , $R_L = 150 \Omega^1$ |     | 110    |     |     | 110    |     | MHz    |
| t <sub>S</sub>  | Settling time          | $A_{CL} = 2$ , $R_L = 150 \Omega^1$ |     | 15     |     |     | 15     |     | ns     |
| SR              | Slew rate              | $A_{CL} = 2$ , $R_L = 150 \Omega^1$ |     | 600    |     |     | 600    |     | V/μs   |
| t <sub>PD</sub> | Propagation delay      | $A_{CL} = 2$ , $R_L = 150 \Omega^1$ |     | 7      |     |     | 7      |     | ns     |
|                 | Full power response    | $A_{CL} = 2$ , $R_L = 150 \Omega^1$ |     | 48     |     |     | 48     |     | MHz    |
|                 | Full power response    | $A_V = 7$ , $R_L = 150 \Omega^1$    |     | 20     |     |     | 20     |     | MHz    |
|                 | Input noise voltage    | $R_S = 50 \Omega$ , 1 MHz           |     | 4      |     |     | 4      |     | nV/√Hz |
|                 | Input noise current    | 1 MHz                               |     | 6      |     |     | 6      |     | pA/√Hz |

#### NOTE:

#### **AC ELECTRICAL CHARACTERISTICS**

 $V_{CC}$  =  $\pm 6$  V,  $R_L$  = 150  $\Omega$  to GND and 390  $\Omega$  to  $-V_{CC}$ , unless otherwise specified.

| SYMBOL          | PARAMETER              | TEST CONDITIONS     |     | SE5539 |     | UNITS |
|-----------------|------------------------|---------------------|-----|--------|-----|-------|
| STIMBUL         | PARAWETER              | TEST CONDITIONS     | MIN | TYP    | MAX | UNITS |
| BW              | Gain bandwidth product | A <sub>CL</sub> = 7 |     | 700    |     | MHz   |
| DVV             | Small signal bandwidth | $A_{CL} = 2^1$      |     | 120    |     | IVITZ |
| t <sub>S</sub>  | Settling time          | $A_{CL} = 2^{1}$    |     | 23     |     | ns    |
| SR              | Slew rate              | $A_{CL} = 2^{1}$    |     | 330    |     | V/μs  |
| t <sub>PD</sub> | Propagation delay      | $A_{CL} = 2^{1}$    |     | 4.5    |     | ns    |
|                 | Full power response    | $A_{CL} = 2^{1}$    |     | 20     |     | MHz   |

6

#### NOTE:

#### **TYPICAL PERFORMANCE CURVES**

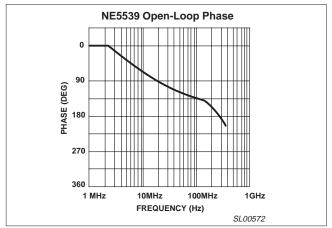



Figure 3. NE5539 Open-Loop Phase

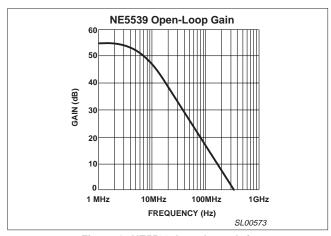



Figure 4. NE5539 Open-Loop Gain

<sup>1.</sup> External compensation.

<sup>1.</sup> External compensation.

#### TYPICAL PERFORMANCE CURVES (Continued)

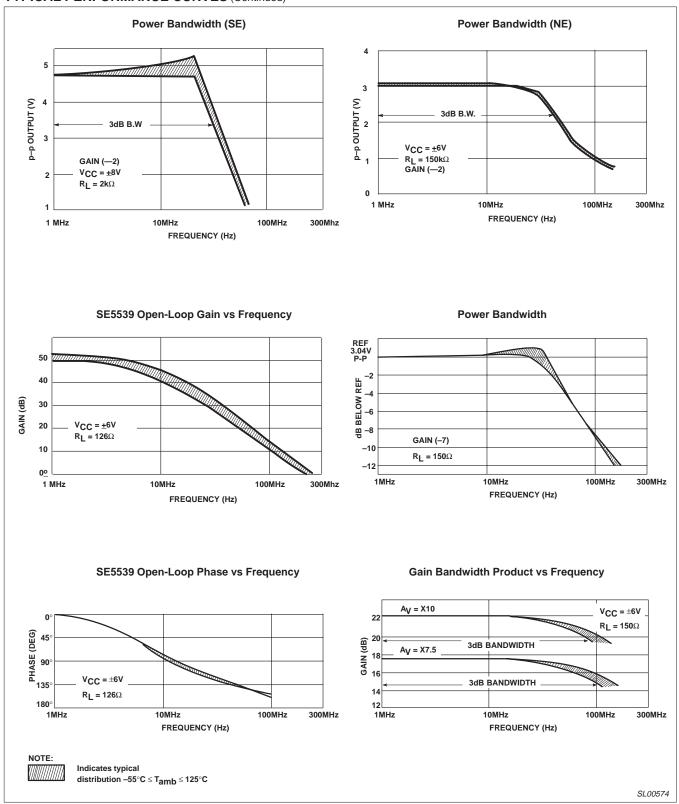



Figure 5. Typical Performance Curves

## High frequency operational amplifier

NE/SE5539

#### **CIRCUIT LAYOUT CONSIDERATIONS**

As may be expected for an ultra-high frequency, wide-gain bandwidth amplifier, the physical circuit is extremely critical.

Bread-boarding is not recommended. A double-sided copper-clad printed circuit board will result in more favorable system operation. An example utilizing a 28 dB non-inverting amp is shown in Figure 6.

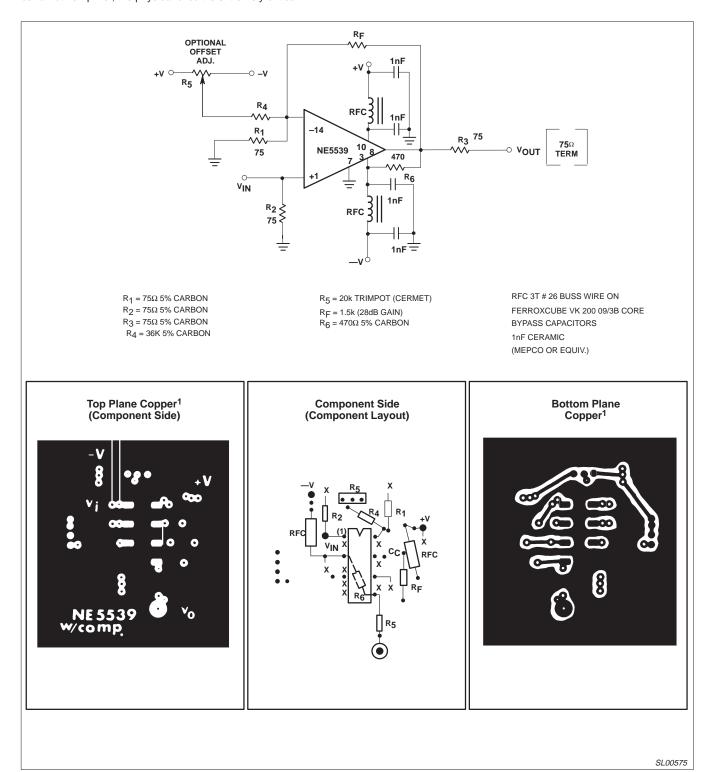



Figure 6. 28dB Non-Inverting Amp Sample PC Layout

## High frequency operational amplifier

#### NE/SE5539

#### **NE5539 COLOR VIDEO AMPLIFIER**

The NE5539 wideband operational amplifier is easily adapted for use as a color video amplifier. A typical circuit is shown in Figure 7 along with vector-scope1 photographs showing the amplifier differential gain and phase response to a standard five-step modulated staircase linearity signal (Figures 8, 9 and 10). As can be seen in Figure 9, the gain varies less than 0.5% from the bottom to the top of the staircase. The maximum differential phase shown in Figure 10 is approximately +0.1°.

The amplifier circuit was optimized for a 75  $\Omega$  input and output termination impedance with a gain of approximately 10 (20 dB).

#### NOTE:

1. The input signal was 200 mV and the output 2 V.  $V_{CC}$  was  $\pm 8$  V.

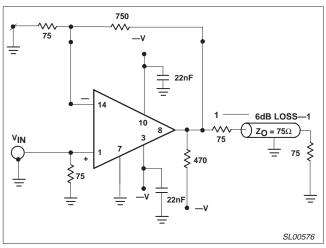



Figure 7. NE5539 Video Amplifier

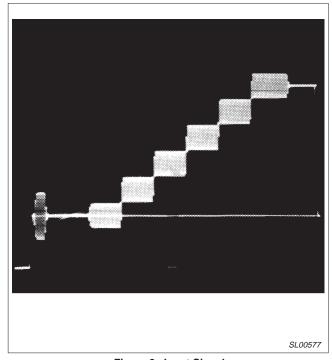



Figure 8. Input Signal

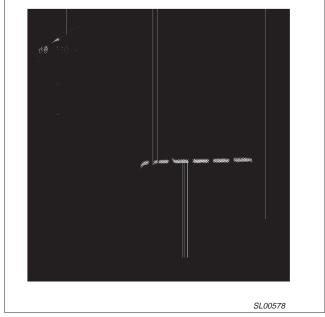



Figure 9. Differential Gain < 0.5%

#### NOTE:

Instruments used for these measurements were Tektronix 146 NTSC test signal generator, 520A NTSC vectorscope, and 1480 waveform monitor.

## High frequency operational amplifier

## NE/SE5539

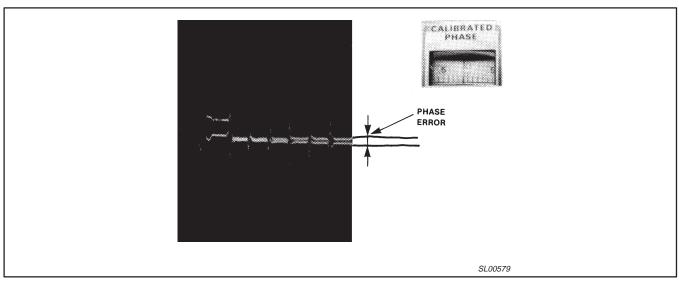



Figure 10. Differential Gain +0.1°

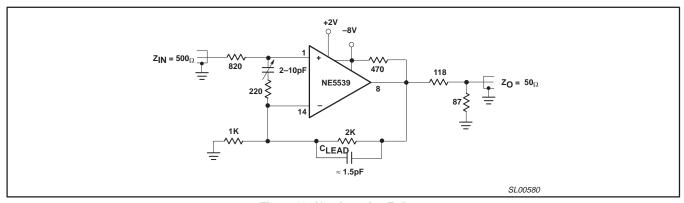
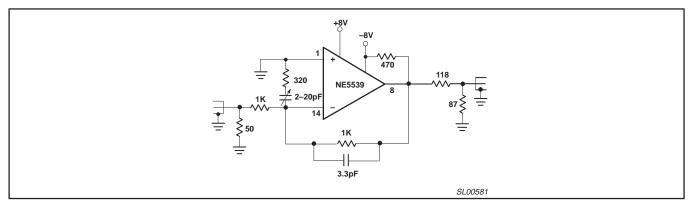
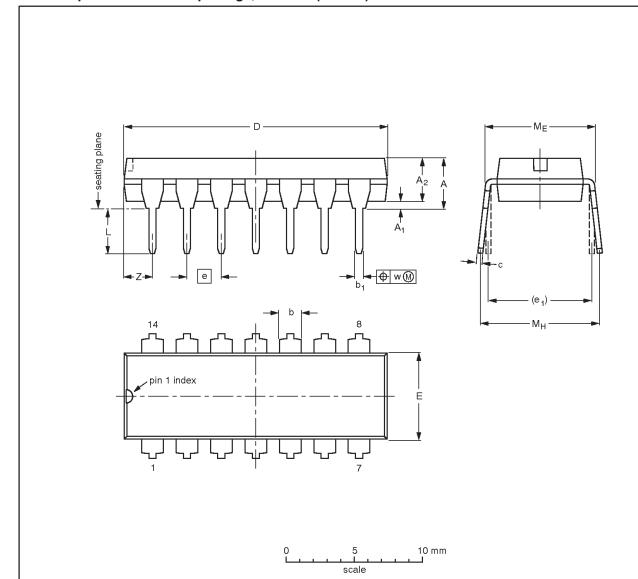



Figure 11. Non-Inverting Follower





Figure 12. Inverting Follower

## High frequency operational amplifier

NE/SE5539

DIP14: plastic dual in-line package; 14 leads (300 mil)

SOT27-1

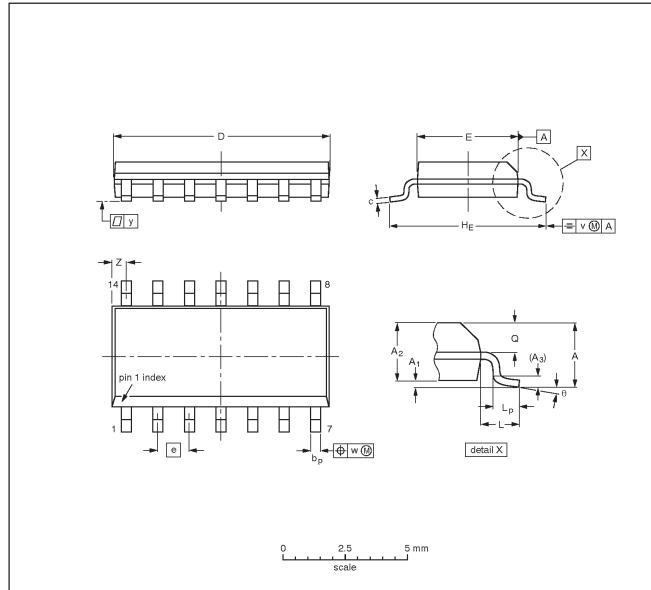


#### DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT   | A<br>max. | A <sub>1</sub><br>min. | A <sub>2</sub><br>max. | b              | b <sub>1</sub> | С              | D <sup>(1)</sup> | E <sup>(1)</sup> | е    | e <sub>1</sub> | L            | ME           | Мн           | w     | Z <sup>(1)</sup><br>max. |
|--------|-----------|------------------------|------------------------|----------------|----------------|----------------|------------------|------------------|------|----------------|--------------|--------------|--------------|-------|--------------------------|
| mm     | 4.2       | 0.51                   | 3.2                    | 1.73<br>1.13   | 0.53<br>0.38   | 0.36<br>0.23   | 19.50<br>18.55   | 6.48<br>6.20     | 2.54 | 7.62           | 3.60<br>3.05 | 8.25<br>7.80 | 10.0<br>8.3  | 0.254 | 2.2                      |
| inches | 0.17      | 0.020                  | 0.13                   | 0.068<br>0.044 | 0.021<br>0.015 | 0.014<br>0.009 | 0.77<br>0.73     | 0.26<br>0.24     | 0.10 | 0.30           | 0.14<br>0.12 | 0.32<br>0.31 | 0.39<br>0.33 | 0.01  | 0.087                    |

#### Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


| OUTLINE |        | REFER  | EUROPEAN  | ISSUE DATE |            |                                 |
|---------|--------|--------|-----------|------------|------------|---------------------------------|
| VERSION | IEC    | JEDEC  | EIAJ      |            | PROJECTION | 1330E DATE                      |
| SOT27-1 | 050G04 | MO-001 | SC-501-14 |            |            | <del>95-03-11</del><br>99-12-27 |

## High frequency operational amplifier

NE/SE5539

#### SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1



#### DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT   | A<br>max. | A <sub>1</sub> | A <sub>2</sub> | А3   | bp             | С                | D <sup>(1)</sup> | E <sup>(1)</sup> | e     | HE             | L     | Lp             | Q          | >    | w    | у     | Z <sup>(1)</sup> | θ  |
|--------|-----------|----------------|----------------|------|----------------|------------------|------------------|------------------|-------|----------------|-------|----------------|------------|------|------|-------|------------------|----|
| mm     | 1.75      | 0.25<br>0.10   | 1.45<br>1.25   | 0.25 | 0.49<br>0.36   | 0.25<br>0.19     | 8.75<br>8.55     | 4.0<br>3.8       | 1.27  | 6.2<br>5.8     | 1.05  | 1.0<br>0.4     | 0.7<br>0.6 | 0.25 | 0.25 | 0.1   | 0.7<br>0.3       | 8° |
| inches | 0.069     | 0.010<br>0.004 | 0.057<br>0.049 | 0.01 | 0.019<br>0.014 | 0.0100<br>0.0075 | 0.35<br>0.34     | 0.16<br>0.15     | 0.050 | 0.244<br>0.228 | 0.041 | 0.039<br>0.016 |            | 0.01 | 0.01 | 0.004 | 0.028<br>0.012   | 0° |

#### Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

| OUTLINE  |        | REFEF  | RENCES | EUROPEAN   | ISSUE DATE                      |  |
|----------|--------|--------|--------|------------|---------------------------------|--|
| VERSION  | IEC    | JEDEC  | EIAJ   | PROJECTION | ISSUE DATE                      |  |
| SOT108-1 | 076E06 | MS-012 |        |            | <del>97-05-22</del><br>99-12-27 |  |

## High frequency operational amplifier

NE/SE5539

**NOTES** 

## High frequency operational amplifier

NE/SE5539

#### Data sheet status

| Data sheet status <sup>[1]</sup> | Product<br>status <sup>[2]</sup> | Definitions                                                                                                                                                                                                                                                                                                            |
|----------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective data                   | Development                      | This data sheet contains data from the objective specification for product development.  Philips Semiconductors reserves the right to change the specification in any manner without notice.                                                                                                                           |
| Preliminary data                 | Qualification                    | This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.                                     |
| Product data                     | Production                       | This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A. |

<sup>[1]</sup> Please consult the most recently issued data sheet before initiating or completing a design.

#### **Definitions**

**Short-form specification** — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

**Application information** — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

#### **Disclaimers**

**Life support** — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

#### **Contact information**

For additional information please visit

http://www.semiconductors.philips.com. Fax: +31 40 27 24825

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2002 All rights reserved. Printed in U.S.A.

Date of release: 01-02

Document order number: 9397 750 09382

Let's make things better.

Philips Semiconductors





<sup>[2]</sup> The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.