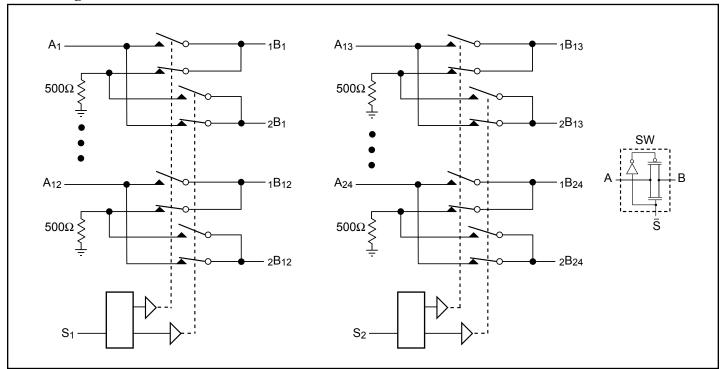


3.3V, 24-Bit to 48-Bit Mux/DeMux *NanoSwitch*™


Features

- Near-Zero propagation delay
- R_{ON} is 5Ω typical at 3.3V
- Fast switching speed: 4.5ns (max.)
- V_{CC} operating range: 3.0V to 3.6V
- 500Ω pulldown to the unconnected B port
- Industrial operating temperature: -40°C to +85°C
- · Make-before-break action
- Packaging (Pb-free & Green):
 - 80-pin BQSOP (B)

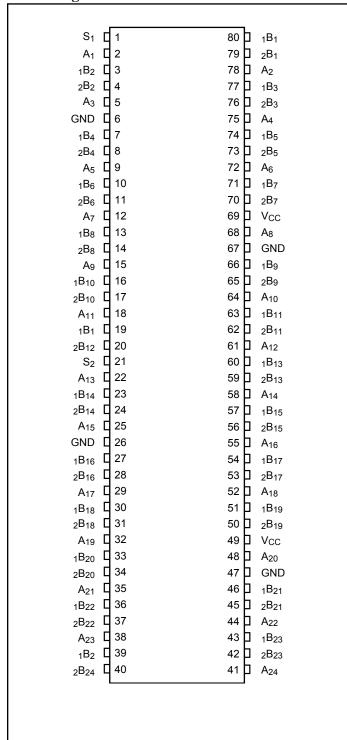
Description

Pericom Semiconductor's PI3B16248 is a 3.3V, 24-bit to 48-bit Mux/DeMux Bus Switch designed with a low On-Resistance allowing inputs to be connected directly to outputs.

Block Diagram

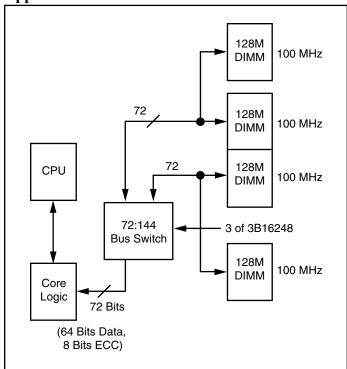
1

Truth Table⁽¹⁾


Function	S2/S1	A
A to 1B	L	1B
A to 2B	Н	2B

Note:

1. H = High Voltage Level, L = Low Voltage Level



Pin Configuration

Application Circuit

2

Memory Switching Application

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Ambient Temperature with Power Applied	40°C to +85°C
Supply Voltage Range	0.5V to +4.6V
DC Input Voltage	0.5V to +4.6V
DC Output Current	120mA
Power Dissipation	0.5W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the Operating Range, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $V_{CC} = 3.0$ to 3.6V)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
V_{IH}	Input HIGH Voltage	S1, S2	2.0			V
$V_{\rm IL}$	Input LOW Voltage	S1, S2	-0.5		0.8	V
I_{IH}	Input HIGH Current	$V_{CC} = MAX., V_{IN} = V_{CC}$			±1	4
I_{IL}	Input LOW Current	V_{CC} - MAX., V_{IN} = GND			±1	μA
R _{ON}	Switch On-Resistance	$V_{CC} = Min., V_{IN} = 0V, I_{ON} = 24mA$		5	8	Ω
		$V_{CC} = Min., V_{IN} = 0V, I_{ON} = 12mA$		10	15	32
C_{IN}	Input Capacitance	$V_{CC} = 0V, 25^{\circ}C, f = 1 \text{ MHz}$			3.0	nE
C _{ON}	Output Capacitance	$V_{CC} = 0V, 25^{\circ}C, f = 1 \text{ MHz}$			25.0	pF
I_{CC}	Power Supple Quiescent	$V_{CC} = Max., V_{IN} = GND \text{ or } V_{CC}$			20	
I _{OZH}	High Impedance Output Current	$0 \le A, B \le V_{CC}$			±1	μA
V _{IK}	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18mA$	1	-0.7	-1.2	V

Note:

Electrical Characteristics ($V_{CC} = 3.0V \text{ to } 3.6V, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$)

Parameters	Description	Test Conditions	Com.		TT:4
			Min.	Max.	Units
t_{PLH}	Propagation Delay A _X to B _X	$C_L = 50 pF, R_L = 500 \Omega$		250	ps
$t_{\rm EN}^{(3)}$	Bus Enable	$C_L = 50pF$	1	4.5	
t _{DIS} ⁽³⁾	Bus Disable	$R_L = 500\Omega$	1	5.0	ns
t _M	Make-before-break time	$R = 500\Omega$	0	2	

Notes:

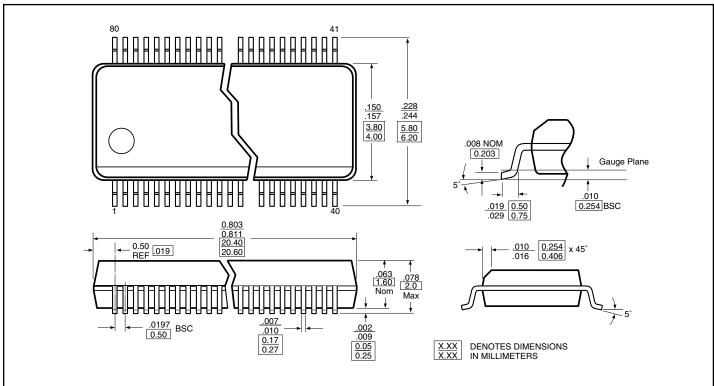
- 1. This parameter is guaranteed but not tested on Propagation Delays.
- 2. The bus switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for 50pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

3

3. See test circuit and waveforms.

^{1.} Typical values are shown at $V_{CC} = 3.3V$, $+25^{\circ}C$ ambient and maximum loading.

Applications Information


Logic Inputs

Logic control inputs can be driven up to +5.5V regardless of the supply voltage. For example, given a 5.0V supply, the control or select pins may be driven low to 0V and high to 5.5V. Driving the control or select pins Rail-toRail® minimizes power consumption.

Power-Supply Sequencing and Hot Plug Information

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V_{CC} and GND before applying signals to the input/output or control pins.

Packaging Mechanical: 80-pin BQSOP (B)

Ordering Information

Ordering Code	Package Code	Package Description
PI3B16248B	В	80-pin BQSOP
PI3B16248BE	В	Pb-free & Green, 80-pin BQSOP

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/