ON Semiconductor ${ }^{\text {® }}$

FPF2193 / FPF2194 / FPF2195
 Full-Function Load Switch with Adjustable Current Limit

Features

- <1.8 to 5.5 V Input Voltage Range
- Controlled Turn-On
- 0.1 to 1.5 A Adjustable Current Limit
- Under-Voltage Lockout
- Thermal Shutdown
- $\quad<2 \mu \mathrm{~A}$ Shutdow n Current
- Auto Restart
- Fast Current Limit Response Time
- $5 \mu \mathrm{~s}$ to Moderate Over Currents
- 30 ns to Hard Shorts
- Fault Blanking
- Reverse Current Blocking

Applications

- PDAs
- Cell Phones
- Handheld GPS Devices
- Portable Enterprise / Industrial Devices
- Digital Cameras
- Peripheral Ports and Accessories
- Portable Medical Equipment
- Hot Sw ap Supplies

Description

The FPF2193, FPF2194, and FPF2195 form a series of load switches that provides full protection to systems and loads that may encounter large current conditions. These devices contain a $55 \mathrm{~m} \Omega$ current-limited P channel MOSFET that can operate over an input voltage range of 1.8 to 5.5 V . Internally, current is prevented from flow ing when the MOSFET is off and the output voltage is higher than the input voltage. Switch control is by a logic input (ON) capable of interfacing directly with low-voltage control signals. Each part contains thermal shutdown protection that shuts off the sw itch to prevent damage to the part when a continuous over-current condition causes excessive heating.

When the switch current reaches the current limit, the parts operate in a constant-current mode to prohibit excessive currents from causing damage. For the FPF2193 and FPF2194, if the constant current condition still persists after 30 ms , the parts shut off the switch and pull the fault signal pin (FLAGB) LOW. The FPF2193 has an auto-restart feature that turns the sw itch on again after 450 ms if the ON pin is still active. The FPF2194 does not have this auto-restart feature, so the switch remains off until the ON pin is cycled. The FPF2195 does not turn off after a current limit fault, but remains in the constant-current mode indefinitely. The minimum current limit can be set as low as 45 mA .
These parts are available in a space-saving six ball advanced $0.98 \times 1.48 \mathrm{~mm}$ WLCSP package.

Ordering Information

Part Number	Current Limit [mA]	Current Limit Blanking Time [ms]	Auto-Restart Time [ms]	ON Pin Activity	Top Mark
FPF2193	100-1500	15/30/60	225/450/900	Active HIGH	S6
FPF2194		15/30/60	NA		S7
FPF2195		0	NA		S9
FPF2195BUCX	45-1500	0	NA		SY

Application Diagram

Figure 1. Typical Application

Block Diagram

Figure 2. Functional Block Diagram

Pin Configuration

Pin 1

BOTTOM

TOP

Figure 3. $1.0 \times 1.5 \mathrm{~mm}$ Chip-Scale Package

Figure 4. Pin Configuration (Bottom View)

Pin Definitions

Pin \#	Name	Description
C1	ISET	Current Limit Set Input. A resistor from Iset to ground sets the current limit for the sw itch.
B2	VIN $^{\prime}$	Supply Input. Input to the pow er sw itch and the supply voltage for the IC.
B1	Vout	Sw itch Output. Output of the pow er sw itch.
A1	FLAGB	Fault Output. Active LOW, open-drain output that indicates an over-current supply, under- voltage, or over-temperature state.
C2	GND	Ground.
A2	ON	ON control input, active HIGH.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
	$\mathrm{V}_{\text {IN }}$, $\mathrm{V}_{\text {out, }}$ ON, FLAGB, ISET to GND		-0.3	6.0	V
PD	Pow er Dissipation at $\mathrm{TA}^{\prime}=25^{\circ} \mathrm{C}{ }^{(1)}$			1.2	W
TJ	Operating Temperature Range		-40	+125	${ }^{\circ} \mathrm{C}$
Tsta	Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
Θ_{JA}	Thermal Resistance, Junction to Ambient			85	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22-A114	8000		
		Machine Model, JESD22-A115	400		

Note:

1. Package pow er dissipation on one-square inch pad, tw o-ounce copper board.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	Input Voltage	1.8	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Ambient Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{V}_{\mathbb{N}}=1.8$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherw ise noted. Typical values are at $\mathrm{V}_{\mathbb{N}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions		Min.	Typ.	Max.	Units
Basic Operation							
$\mathrm{V}_{\text {IN }}$	Operating Voltage			1.8		5.5	V
lQ	Quiescent Current	lout $=0 \mathrm{~mA}, \mathrm{~V}_{\text {ON }}=\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$		70		$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$		75		
			$\mathrm{V}_{\mathrm{IN}=}=5.5 \mathrm{~V}$		80		
Ron	On Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, lout $=200 \mathrm{~mA}$			55	80	$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{A}=-40}$ to $85^{\circ} \mathrm{C}$, lout $=200 \mathrm{~mA}$				135	
$\mathrm{V}_{\text {IH }}$	On Input Logic High Voltage ON	$\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$		0.8			V
		$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$		1.4			
VIL	On Input Logic Low Voltage	$\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$				0.5	V
		$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$				1.0	
1 N	On Input Leakage	$\mathrm{V}_{\text {ON }}=\mathrm{V}_{\text {IN }}$ or GND		-1	0	1	$\mu \mathrm{A}$
VIN_SD	VIN Shutdown Current	$\begin{aligned} & \mathrm{V}_{\text {ON }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=\text { Short to } \end{aligned}$		-2		2	$\mu \mathrm{A}$
$V_{\text {FLB_L }}$	FLAGB Output Logic Low Voltage	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{ISINK}=10 \mathrm{~mA}$			0.05	0.20	V
		$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}, \mathrm{ISINK}=10 \mathrm{~mA}$			0.12	0.30	
IFLB_H	FLAGB Output Logic High Leakage Current	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, Sw itch ON				1	$\mu \mathrm{A}$
Reverse Block							
ISDT	Vout Shutdow n Current	$\begin{aligned} & \hline \mathrm{V}_{\text {ON }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }}=\text { Short-to-GND } \end{aligned}$		-2		2	$\mu \mathrm{A}$
V breakcown	Reverse Breakdow n Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ON }}=0 \mathrm{~V}$, lout $=200 \mu \mathrm{~A}$			9		V
Protections							
lıIM	Current Limit	$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.0 \mathrm{~V}, \mathrm{R}_{\text {SET }}=690 \Omega$		600	800	1000	mA
	Current Limit for FPF2195BUCX	$\begin{aligned} & \hline \mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4.2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{SET}}=15.8 \mathrm{~K} \Omega \\ & \hline \end{aligned}$		35	45	60	mA
LIIM(MIN)	Minimum Current Limit	$\begin{aligned} & \hline \mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{SET}}=5516 \Omega \\ & \hline \end{aligned}$			100		ma
TSD	Thermal Shutdown	Shutdow n Threshold			140		${ }^{\circ} \mathrm{C}$
		Return from Shutdow n			130		
		Hysteresis			10		
Vuvio	Under-Voltage Lockout	VIN Increasing		1.55	1.65	1.75	V
VuvLo_hYst	Under-Voltage Lockout Hysteresis				50		mV
Dynamic							
tdon	Delay On Time	$\mathrm{R}_{L}=500 \Omega, \mathrm{C}_{L}=0.1 \mu \mathrm{~F}$			20		$\mu \mathrm{s}$
t_{R}	Vout Rise Time	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{L}=0.1 \mu \mathrm{~F}$			20		$\mu \mathrm{s}$
ton	Turn-On Time	$\mathrm{R}_{L}=500 \Omega, \mathrm{C}_{L}=0.1 \mu \mathrm{~F}$			40		$\mu \mathrm{s}$
tdoff	Delay Off Time	$\mathrm{R}_{L}=500 \Omega, \mathrm{C}_{L}=0.1 \mu \mathrm{~F}$			15		$\mu \mathrm{s}$
t_{F}	Vout Fall Time	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{L}=0.1 \mu \mathrm{~F}$			110		$\mu \mathrm{s}$
toff	Turn-Off Time	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$			125		$\mu \mathrm{s}$
tblank	Over-Current Blanking Time	FPF2193, FPF2194		15	30	60	ms
trstri	Auto-Restart	FPF2193 Only		225	450	900	ms
tsc	Short-Circuit Response Time	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {out }}=3.3 \mathrm{~V}$, Moderate OverCurrent Condition			5		$\mu \mathrm{s}$
		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$, Hard	d Short		30		ns

Typical Performance Characteristics

Figure 5. Quiescent Current vs. Input Voltage

Figure 7. Quiescent Current vs. Temperature

Figure 9. Von Low Voltage vs. Input Voltage

Figure 6. Quiescent Current vs. Input Voltage

Figure 8. Von High Voltage vs. Input Voltage

Figure 10. Current Limit vs. Output Voltage

Typical Performance Characteristics (Continued)

Figure 11. Current Limit vs. Temperature

Figure 13. Ron vs. Temperature

Figure 15. $t_{\text {RISE }} / t_{\text {FALL }}$ vs. Temperature

Figure 12. Ron vs. Vin

Figure 14. ton / toff vs. Temperature

Figure 16. $t_{\text {RStRT }}$ vs. Temperature

Typical Performance Characteristics (Continued)

Figure 17. tblank vs.Temperature

Figure 19. toff Response

Figure 21. Current Limit Response Time (Switch is Powered into a Short)

Figure 18. ton Response

Figure 20. Short-Circuit Response Time (Output Shorted to GND)

Figure 22. Current Limit Response Time (Output is Loaded by 2.2Ω, Cout=0.1 $\mu \mathrm{F}$)

Typical Performance Characteristics (Continued)

Figure 23. Current Limit Response Time (Output is Loaded by 2.2Ω, Cout=10 $\mu \mathrm{F}$)

Figure 24. Short-Circuit Detection Function ${ }^{(4)}$

Figure 25. tblank vs. Response ${ }^{(0)}$

Notes:

2. When the output voltage is below $\mathrm{V}_{\mathrm{SCTH}}=1.1 \mathrm{~V}$, the current limit value is set at 62.5% of the current limit value.
3. VDRVsignal forces the device to go into over-current condition by loading.

Functional Description

The FPF2193, FPF2194, and FPF2195 are currentlimited switches that protect systems and loads that can be damaged or disrupted by the application of high currents. The core of each device is a $55 \mathrm{~m} \Omega \mathrm{P}$-channel MOSFET and a controller capable of functioning over the w ide input operating range of $1.8-5.5 \mathrm{~V}$. The controller protects against system malfunctions through current limiting, under-voltage lockout, and thermal shutdow n . The current limit is adjustable from $100 \mathrm{~mA}(45 \mathrm{~mA}$ for FPF2195BUCX) to 1.5 A through the selection of an external resistor.

On/Off Control

The ON pin controls the state of the switch. When ON is HIGH, the switch is in ON state. Activating ON continuously holds the sw itch in the ON state so long as there is no fault. For all versions, an under-voltage on Vin or a junction temperature in excess of $140^{\circ} \mathrm{C}$ overrides the ON control to turn off the switch. In addition, excessive currents cause the switch to turn off in the FPF2193 and FPF2194. The FPF2193 has an autorestartfeature that automatically turns the sw itch on again after 450 ms . For the FPF2194, the ON pin must be toggled to turn the switch on again. The FPF2195 does not turn off in response to an over-current condition, but remains operating in constant-current mode as long as ON is active and the thermal shutdow n or under-voltage lockout have not activated.

Fault Reporting

Upon the detection of an over-current, input undervoltage, or over-temperature condition, FLAGB signals the fault mode by activating LOW. For the FPF2193 and FPF2194, the FLAGB goes LOW at the end of the blanking time, while FLAGB goes LOW immediately for the FPF2195. FLAGB remains LOW through the autorestart time for the FPF2195. For the FPF2194, FLAGB is latched LOW and ON must be toggled to release it. With the FPF2195, FLAGB is LOW during the faults and immediately returns HIGH at the end of the fault condition. FLAGB is an open-drain MOSFET that requires a pull-up resistor between $V_{\mathbb{N}}$ and FLAGB. During shutdow n , the pull-dow n on FLAGB is disabled to reduce current draw from the supply.

Current Limiting

The current limit ensures that the current through the switch doesn't exceed a maximum value, while not limiting at less than a minimum value. The current at which the parts limit is adjustable through the selection of an external resistor connected to Iset. Information for selecting the resistor is found in the Application Information section. The FPF2193 and FPF2194 have a blanking time of 30 ms , nominally, during which the sw itch acts as a constant current source. At the end of the blanking time, the switch is turned off. The FPF2195 has no current limit blanking period, so it remains in a constant current state until the ON pin is deactivated or the thermal shutdow n turns off the switch.
For preventing the switch from large pow er dissipation during heavy load, a short-circuit detection feature is introduced. Short-circuit condition is detected by, observing the output voltage. The switch is put into shortcircuit current-limiting mode if the switch is loaded with a
heavy load. When the output voltage drops below $\mathrm{V}_{\text {scth }}$, the short-circuit detection threshold voltage, the current limit value is re-conditioned and the short-circuit currentlimit value is decreased to 62.5% of the current limit value. This keeps the pow er dissipation of the part below a certain limit even at dead-short conditions at 5.5 V input voltage. The $\mathrm{V}_{\text {scth }}$ value is set to be 1 V . At around 1.1 V of output voltage, the sw itch is removed from short-circuit current-limiting mode and the current limit is set to the current limit value.

Under-Voltage Lockout (UVLO)

The under-voltage lockout turns the sw itch off if the input voltage drops below the under-voltage lockout threshold. With the ON pin active, the input voltage rising above the under-voltage lockout threshold causes a controlled turnon of the sw itch, which limits current over shoot.

Thermal Shutdown

The thermal shutdow n protects the die from internally or externally generated excessive temperatures. During an over-temperature condition, FLAGB is activated and the switch is turned off. The sw itch automatically turns on again if temperature of the die drops below the threshold temperature.

Reverse-Current Blocking

The entire FPF2193/94/95 family has a reverse current blocking feature that protects the input source against current flow from output to input. For a standard USB pow er design, this is an important feature to protect the USB host from being damaged due to reverse current flow on $V_{\text {bus. }}$
When the load sw itch is OFF, no current flow s from the output to the input. If the switch is turned on and the output voltage is greater than input voltage, this feature is activated and turns off the switch. This prevents any current flow from output to input. The reverse-current blocking feature is deactivated if the $\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}$ is smaller than a typically 50 mV threshold. During this time, some current ($50 \mathrm{mV} /$ Ron) flow s from the output to input until input voltage becomes greater than output voltage. FLAGB operation is independent of the reverse-current blocking and does not report a fault condition if this feature is activated.

Figure 27. Timing Diagram
where:
tdon = Delay On Time
$\mathrm{t}_{\mathrm{R}}=\mathrm{V}_{\text {OUt }}$ Rise Time
ton $=$ Turn-On Time
tdoff = Delay Off Time
$\mathrm{t}_{\mathrm{F}}=$ Vout Fall Time
toff $=$ Turn-Off Time

Application Information

Figure 28. Typical Application

Setting Current Limit

The FPF2193, FPF2194, and FPF2195 current limit is set with an external resistor connected betw een ISET and GND. This resistor is selected using the following equation:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{SET}}=\frac{551.6}{\mathrm{I}_{\mathrm{LIM}}} \tag{1}
\end{equation*}
$$

Rset is in Ω and Iset is in Amps.
Table 1 can also be used to select RSET. A typical application would be the 500 mA current required by a single USB port. Using Table 1, an appropriate selection for the RSET resistor would be 788Ω. This ensures that the port load could draw 525 mA , but not more than 875 mA . Likew ise for a dual-port system; an RSET of 368Ω alw ays delivers at least 1125 mA and never more than 1875 mA .

Table 1. Current Limit Various Rset Values

RSET $^{(\Omega)}$)	Min. Current Limit (m A)	Typ. Current Lim it (m A)	Max. Current Limit (m A)
368	1125	1500	1875
441	928	1250	1562
552	750	1000	1250
613	675	900	1125
690	600	800	1000
788	525	700	875
919	450	600	750
1103	375	500	625
1226	338	450	563
1379	300	400	500
1576	263	350	438
1839	225	300	375
2206	188	250	313
2758	150	200	250
3677	113	150	188
5516	75	100	125
$15800^{(4)}$	35	45	60

Note:

4. FPF2195BUCX only.

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush currents when the switch is turned on into a discharged load capacitor or a short-circuit, a capacitor needs to be placed betw een $\mathrm{V}_{\mathbb{I}}$ and GND. A $0.1 \mu \mathrm{~F}$ ceramic capacitor, C_{I}, placed close to the pins is usually sufficient. Higher values of $\mathrm{ClN}_{\mathrm{IN}}$ can be used to further reduce the voltage drop.

Output Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor, Cout, should be placed between Vout and GND. This capacitor prevents parasitic board inductances from forcing Vout below GND when the sw itch turns off. For the FPF2193 and FPF2194, the total output capacitance needs to be kept below a maximum value, Cout(max), to prevent the part from registering an over-current condition and turning off the switch. The maximum output capacitance can be determined from the follow ing formula:

$$
\begin{equation*}
\mathrm{C}_{\text {OUT }}(\max)=\frac{\mathrm{I}_{\mathrm{LIM}}(\max) \times \mathrm{t}_{\text {BLANK }}(\min)}{\mathrm{V}_{\mathrm{IN}}} \tag{2}
\end{equation*}
$$

Power Dissipation

During normal operation as a switch, the power dissipated depends upon the level at which the current limit is set. The maximum allow ed setting for the current limit is 1.5 A and results in a pow er dissipation of:
$P=\left(l_{\text {LIM }}\right)^{2} \times R_{O N}=(1.5)^{2} \times 0.055=123.75 \mathrm{~mW}$
If the part goes into current limit, the maximum power dissipation occurs when the output is shorted to ground. For the FPF2193, the power dissipation scales by the auto-restart time, tretrt, and the over-current blanking time, tblank, so that the maximum pow er dissipated is:

$$
\begin{align*}
& \mathrm{P}(\max)=\frac{\mathrm{t}_{\text {BLANK }}}{\mathrm{t}_{\text {BLANK }}+\mathrm{t}_{\text {RSTRT }}} \times \mathrm{V}_{\text {IN }}(\max) \times \mathrm{I}_{\mathrm{LIM}}(\max) \tag{4}\\
& =\frac{30}{30+450} \times 5.5 \times 1.5=515.6 \mathrm{~mW}
\end{align*}
$$

This is more power than the package can dissipate, but the thermal shutdow n of the part activates to protect the part from damage due to excessive heating. When using the FPF2194, attention must be given to the manual resetting of the part. The junction temperature is only able to increase to the thermal shutdow n threshold. Once this temperature has been reached, toggling ON does not turn the switch on until the junction temperature drops. For the FPF2195, a short on the output causes the part to operate in a constant-current state, dissipating a w orst-case pow er of:
$\mathrm{P}($ max $)=\mathrm{V}_{\text {IN }}($ max $) \times \mathrm{I}_{\text {LIM }}($ max $)$
$=5.5 \times 1.5=8.25 \mathrm{~W}$
This large amount of power activates the thermal shutdown and the part cycles in and out of thermal shutdow n as long as the ON pin is active and the short is present.

Board Layout

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal and short-circuit operation. Using wide traces for $\mathrm{V}_{\text {IN }}$, Vout, and GND help to minimize parasitic electrical effects along with minimizing the case-to-ambient thermal impedance.

Physical Dimensions

RECOMMENDED LAND PATTERN (NSMD PAD TYPE)

SIDE VIEWS

NOTES:
A. NO JEDEC REGISTRATION APPLIES.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCE PER ASMEY14.5M, 1994.
D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
E. PACKAGE NOMINAL HEIGHT IS 582 MICRONS ± 43 MICRONS (539-625 MICRONS).
f. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
G. DRAWING FILNAME: MKT-UC006AFrev2.

Figure 29. 6-Ball, Wafer-Level Chip-Scale Package (WLCSP)

\mathbf{D}	\mathbf{E}	\mathbf{X}	\mathbf{Y}
1.480 ± 0.030	0.980 ± 0.030	0.240	0.240

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee reg arding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

 LITERATURE FULFILLMENT:| Literature Distribution Center for ON Semiconductor | N. Amer ic an Technical Support: 800-282-9855 Toll Free | ON Semic onductor Website: www.onsemi.com |
| :--- | :--- | :--- |
| 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA | USA/Canada. | |
| Phone: $303-675-2175$ or $800-344-3860$ Toll Free USA/Canada | Eur ope, Middle East and Afr ica Technical Support: | Or der Literature: http://www.onsemi.com/orderlit |
| Fax: $303-675-2176$ or 800-344-3867 Toll Free USA/Canada | Phone: 421 337902910 | |
| Email: orderlit@onsemi.com | Japan Customer Focus Center | For additional information, please contact your local |

