The RF Line
 NPN Silicon
 RF Power Transistor

Designed primarily for high-voltage applications as a high-power linear amplifier from 2.0 to 30 MHz . Ideal for marine and base station equipment.

- Specified 50 Volt, 30 MHz Characteristics -

Output Power = 150 W (PEP)
Minimum Gain $=13 \mathrm{~dB}$ Efficiency $=45 \%$

- Intermodulation Distortion @ 150 W (PEP) — IMD = -32 dB (Max)
- Diffused Emitter Resistors for Superior Ruggedness
- 100% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR @ 150 W CW

MRF429

150 W (LINEAR), 30 MHz
RF POWER
TRANSISTOR
NPN SILICON

CASE 211-11, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	50	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	100	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	I C	16	Adc
Withstand Current - 10 s	-	20	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}} \mathrm{C}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD_{D}	233	Watts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	$\mathrm{~W}^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\text {日JC }}$	0.75	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($\mathrm{l} \mathrm{C}=200 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{V}_{\text {(BR) }}$ CEO	50	-	-	Vdc
Collector-Emitter Breakdown Voltage ($\mathrm{I}^{\text {c }}=100 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0$)	$V_{\text {(BR)CES }}$	100	-	-	Vdc
Collector-Base Breakdown Voltage ($\mathrm{IC}=100 \mathrm{mAdc}$, $\mathrm{IE}=0$)	$V_{\text {(BR) }}$ CBO	100	-	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{E}}=10 \mathrm{mAdc}$, $\mathrm{I} \mathrm{C}=0$)	$\mathrm{V}_{\text {(BR) } \mathrm{EBO}}$	4.0	-	-	Vdc

(continued)

ELECTRICAL CHARACTERISTICS - continued ($T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

ON CHARACTERISTICS

DC Current Gain $\left(I_{C}=5.0\right.$ Adc, $\left.V_{\text {CE }}=5.0 \mathrm{Vdc}\right)$	$\mathrm{h}_{\text {FE }}$	10	30	80	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(V_{\mathrm{CB}}=50 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	220	300	pF

FUNCTIONAL TESTS

$\begin{aligned} & \text { Common-Emitter Amplifier Gain } \\ & \left(V_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP}) \text {, IC }(\max)=3.32 \mathrm{Adc},\right. \\ & \mathrm{f}=30 ; 30.001 \mathrm{MHz}) \end{aligned}$	GPE	13	15	-	dB
Output Power $\left(\mathrm{V}_{\mathrm{CE}}=50 \mathrm{Vdc}, \mathrm{f}=30 ; 30.001 \mathrm{MHz}\right)$	Pout	150	-	-	W (PEP)
$\begin{aligned} & \text { Collector Efficiency } \\ & \left(V_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP}) \text {, } \mathrm{I}(\max)=3.32 \mathrm{Adc},\right. \\ & \mathrm{f}=30,30.001 \mathrm{MHz}) \end{aligned}$	η	45	-	-	\%
```Intermodulation Distortion (1) ( \(\mathrm{V}_{\mathrm{CE}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}\) (PEP), IC \(=3.32 \mathrm{Adc}\) )```	IMD	-	-35	-32	dB
$\begin{aligned} & \text { Electrical Ruggedness } \\ & \text { (VCC }=50 \text { Vdc, Pout }=150 \mathrm{WCW}, \mathrm{f}=30 \mathrm{MHz}, \\ & \text { VSWR } 30: 1 \text { at all Phase Angles) } \end{aligned}$	$\psi$	No Degradation in Output Power			

NOTE:

1. To Mil-Std-1311 Version A, Test Method 2204, Two Tone, Reference each Tone.


$$
\begin{aligned}
& \text { C1, C2, C7-170-780 pF, Arco } 469 \\
& \text { C3, C8, C9-0.1 } \mu \mathrm{F}, 100 \text { V Erie } \\
& \mathrm{C} 4-500 \mu \mathrm{~F} @ 6.0 \mathrm{~V} \\
& \mathrm{C} 5-9.0-180 \mathrm{pF} \text {, Arco } 463 \\
& \mathrm{C} 6-80-480 \mathrm{pF}, \text { Arco } 466 \\
& \mathrm{C} 10-30 \mu \mathrm{~F}, 100 \mathrm{~V} \\
& \text { R1-10 } \Omega, 10 \text { Watt }
\end{aligned}
$$

R2 - $10 \Omega$, 1.0 Watt
R3 - 5.0-3.3 $\Omega$ 1/2 Watt Carbon Resistors in Parallel
CR1 - 1N4997
L1 - 3 Turns, \#16 Wire, 5/16" I.D., 5/16" Long
L2 - $10 \mu \mathrm{H}$ Molded Choke
L3 - 12 Turns, \#16 Enameled Wire Closewound, 1/4" I.D.
L4 - 5 Turns, $1 / 8^{\prime \prime}$ Copper Tubing, $9 / 16^{\prime \prime}$ I.D., $3 / 4^{\prime \prime}$ Long
L5 - 10 Ferrite Beads - Ferroxcube \#56-590-65/3B

Figure 1. 30 MHz Test Circuit Schematic


Figure 2. Output Power versus Input Power


Figure 4. Power Gain versus Frequency


Figure 6. $\mathrm{f}_{\mathrm{T}}$ versus Collector Current


Figure 3. Output Power versus Supply Voltage


Figure 5. RF Safe Operating Area (SOAR)


Figure 7. IMD versus Pout


Figure 8. Output Capacitance versus Frequency


Figure 9. Output Resistance versus Frequency


Figure 10. Series Equivalent Impedance

## PACKAGE DIMENSIONS



NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.960	0.990	24.39	25.14
B	0.465	0.510	11.82	12.95
C	0.229	0.275	5.82	6.98
D	0.216	0.235	5.49	5.96
E	0.084	0.110	2.14	2.79
H	0.144	0.178	3.66	4.52
J	0.003	0.007	0.08	0.17
K	0.435	-	11.05	-
M	$45^{\circ} \mathrm{NOM}$		$45^{\circ} \mathrm{NOM}$	
Q	0.115	0.130	2.93	3.30
R	0.246	0.255	6.25	6.47
U	0.720	0.730	18.29	18.54

STYLE 1:
PIN 1. EMITTER
2. BASE
3. EMITTER
4. COLLECTOR

CASE 211-11
ISSUE N


#### Abstract

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and, di are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.


How to reach us:
USA / EUROPE: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki,
6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

MOTOROLA

