Quad TTL to MECL Translator

The MC10124 is a quad translator for interfacing data and control signals between a saturated logic section and the MECL section of digital systems. The MC10124 has TTL compatible inputs, and MECL complementary open-emitter outputs that allow use as an inverting/ non-inverting translator or as a differential line driver. When the common strobe input is at the low logic level, it forces all true outputs to a MECL low logic state and all inverting outputs to a MECL high logic state.

Power supply requirements are ground, +5.0 Volts, and -5.2 Volts. Propagation delay of the MC10124 is typically 3.5 ns . The dc levels are standard or Schottky TTL in, MECL 10,000 out.

An advantage of this device is that TTL level information can be transmitted differentially, via balanced twisted pair lines, to the MECL equipment, where the signal can be received by the MC10115 or MC10116 differential line receivers. The MC10124 is useful in computers, instrumentation, peripheral controllers, test equipment, and digital communications systems.
$\begin{aligned} \mathrm{PD} & =380 \mathrm{~mW} \text { typ/pkg (No Load) } \\ \mathrm{t}_{\mathrm{pd}} & =3.5 \mathrm{~ns} \text { typ }(+1.5 \mathrm{Vdc} \text { in to } 50 \% \text { out }) \\ \mathrm{t}_{\mathrm{r}}, \mathrm{tf} & =2.5 \mathrm{~ns} \text { typ }(20 \%-80 \%)\end{aligned}$

LOGIC DIAGRAM

MC10124

DIP
PIN ASSIGNMENT

Pin assignment is for Dual-in-Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 6-11 of the Motorola MECL Data Book (DL122/D).

Gnd	$=$	PIN 16
$V_{C C}(+5.0 \mathrm{Vdc})$	$=$	PIN 9
$\mathrm{~V}_{\mathrm{EE}}(-5.2 \mathrm{Vdc})$	$=$	PIN 8

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Pin Under Test	Test Limits							Unit
			$-30^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		
			Min	Max	Min	Typ	Max	Min	Max	
Negative Power Supply Drain Current	${ }^{\prime} \mathrm{E}$	8		72			66		72	mAdc
Positive Power Supply Drain Current	ICCH	9		16			16		18	mAdc
	ICCL	9		25			25		25	mAdc
Reverse Current	IR	$\begin{aligned} & 6 \\ & 7 \end{aligned}$		$\begin{gathered} 200 \\ 50 \end{gathered}$			$\begin{gathered} 200 \\ 50 \end{gathered}$		$\begin{gathered} 200 \\ 50 \end{gathered}$	$\mu \mathrm{Adc}$
Forward Current	${ }^{\text {IF }}$	$\begin{aligned} & 6 \\ & 7 \end{aligned}$		$\begin{gathered} \hline-12.8 \\ -3.2 \end{gathered}$			$\begin{gathered} \hline-12.8 \\ -3.2 \end{gathered}$		$\begin{gathered} \hline-12.8 \\ -3.2 \end{gathered}$	mAdc
Input Breakdown Voltage	$B V_{\text {in }}$	6 7	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$			$\begin{aligned} & \hline 5.5 \\ & 5.5 \end{aligned}$		Vdc
Clamp Input Voltage	V_{1}	$\begin{aligned} & 6 \\ & 7 \end{aligned}$		$\begin{aligned} & \hline-1.5 \\ & -1.5 \end{aligned}$			$\begin{aligned} & \hline-1.5 \\ & -1.5 \end{aligned}$		$\begin{aligned} & \hline-1.5 \\ & -1.5 \end{aligned}$	Vdc
High Output Voltage	V_{OH}	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline-1.060 \\ & -1.060 \end{aligned}$	$\begin{aligned} & -0.890 \\ & -0.890 \end{aligned}$	$\begin{aligned} & \hline-0.960 \\ & -0.960 \end{aligned}$		$\begin{aligned} & \hline-0.810 \\ & -0.810 \end{aligned}$	$\begin{aligned} & \hline-0.890 \\ & -0.890 \end{aligned}$	$\begin{aligned} & -0.700 \\ & -0.700 \end{aligned}$	Vdc
Low Output Voltage	V OL	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline-1.890 \\ & -1.890 \end{aligned}$	$\begin{aligned} & -1.675 \\ & -1.675 \end{aligned}$	$\begin{aligned} & \hline-1.850 \\ & -1.850 \end{aligned}$		$\begin{aligned} & \hline-1.650 \\ & -1.650 \end{aligned}$	$\begin{aligned} & \hline-1.825 \\ & -1.825 \end{aligned}$	$\begin{aligned} & -1.615 \\ & -1.615 \end{aligned}$	Vdc
High Threshold Voltage	$\mathrm{V}_{\text {OHA }}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline-1.080 \\ & -1.080 \end{aligned}$		$\begin{aligned} & \hline-0.980 \\ & -0.980 \end{aligned}$			$\begin{aligned} & \hline-0.910 \\ & -0.910 \end{aligned}$		Vdc
Low Threshold Voltage	V OLA	$\begin{aligned} & 1 \\ & 3 \end{aligned}$		$\begin{aligned} & -1.655 \\ & -1.655 \end{aligned}$			$\begin{aligned} & \hline-1.630 \\ & -1.630 \end{aligned}$		$\begin{aligned} & \hline-1.595 \\ & -1.595 \end{aligned}$	Vdc
Switching Times (50Ω Load)										ns
Propagation Delay (+3.5Vdc to $50 \%)^{1}$	$\begin{aligned} & \mathrm{t}_{6+1+} \\ & \mathrm{t}_{6-1-} \\ & \mathrm{t}_{7+1+} \\ & \mathrm{t}_{7-1-} \\ & \mathrm{t}_{7+3-} \\ & \mathrm{t}_{7-3+} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \\ & 1.5 \\ & 1.0 \\ & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 6.0 \\ & 6.8 \\ & 6.0 \\ & 6.8 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \end{array}$	$\begin{aligned} & 3.5 \\ & 3.5 \\ & 3.5 \\ & 3.5 \\ & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & 6.0 \\ & 6.0 \\ & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \\ & 1.0 \\ & 1.5 \\ & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.8 \\ & 6.0 \\ & 6.8 \\ & 6.0 \\ & 6.8 \end{aligned}$	
Rise Time (20 to 80\%)	t_{1+}	1	1.0	4.2	1.1	2.5	3.9	1.1	4.3	
Fall Time (20 to 80\%)	t_{1}	1	1.0	4.2	1.1	2.5	3.9	1.1	4.3	

1. See switching time test circuit. Propagation delay for this circuit is specified from +1.5 Vdc in to the 50% point on the output waveform. The +3.5 Vdc is shown here because all logic and supply levels are shifted 2 volts positive.

ELECTRICAL CHARACTERISTICS (continued)

1. See switching time test circuit. Propagation delay for this circuit is specified from +1.5 Vdc in to the 50% point on the output waveform. The +3.5 Vdc is shown here because all logic and supply levels are shifted 2 volts positive.

ELECTRICAL CHARACTERISTICS

@ Test Temperature			TEST VOLTAGE VALUES (Volts)			(mA)		Gnd
			V_{R}	$\mathrm{V}_{\text {cc }}$	V_{EE}	1	lin	
		$-30^{\circ} \mathrm{C}$	+2.40	+5.00	-5.2	-10	+1.0	
		$+25^{\circ} \mathrm{C}$	+2.40	+5.00	-5.2	-10	+1.0	
		$+85^{\circ} \mathrm{C}$	+2.40	+5.00	-5.2	-10	+1.0	
Characteristic	Symbol	Pin Under Test	TEST VOLTAGE APPLIED TO PINS LISTED BELOW					
			V_{R}	Vcc	$\mathrm{V}_{\text {EE }}$	I	lin	
Negative Power Supply Drain Current	${ }^{\prime} \mathrm{E}$	8		9	8			16
Positive Power Supply Drain Current	ICCH	9		9	8			16
	ICCL	9		9	8			5,6,7,10,11,16
Reverse Current	IR	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	9 9	$\begin{aligned} & 8 \\ & 8 \end{aligned}$			$\begin{aligned} & 16 \\ & 16 \end{aligned}$
Forward Current	${ }^{\text {IF }}$	$\begin{aligned} & 6 \\ & 7 \end{aligned}$		9	$\begin{aligned} & 8 \\ & 8 \end{aligned}$			$\begin{aligned} & 16 \\ & 16 \end{aligned}$
Input Breakdown Voltage	$B V_{\text {in }}$	$\begin{aligned} & 6 \\ & 7 \end{aligned}$		$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$		$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\begin{gathered} 5,7,10,11,16 \\ 6,16 \end{gathered}$
Clamp Input Voltage	V_{1}	$\begin{aligned} & 6 \\ & 7 \end{aligned}$		9 9	8	6 7		$\begin{aligned} & \hline 16 \\ & 16 \end{aligned}$
High Output Voltage	V_{OH}	$\begin{aligned} & 1 \\ & 3 \end{aligned}$		9	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$			$\begin{aligned} & \hline 16 \\ & 16 \end{aligned}$
Low Output Voltage	V OL	$\begin{aligned} & 1 \\ & 3 \end{aligned}$		9 9	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$			$\begin{aligned} & 16 \\ & 16 \end{aligned}$
High Threshold Voltage	$\mathrm{V}_{\text {OHA }}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$		9	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$			$\begin{aligned} & 16 \\ & 16 \end{aligned}$
Low Threshold Voltage	VOLA	$\begin{aligned} & 1 \\ & 3 \end{aligned}$		9 9	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$			$\begin{aligned} & \hline 16 \\ & 16 \end{aligned}$
Switching Times (50 L Load)				+7.0 V	-3.2 V			+2.0 V
Propagation Delay $(+3.5 \mathrm{Vdc} \text { to } 50 \%)^{\mathbf{1}}$	$\begin{aligned} & \mathrm{t}_{6+1+} \\ & \mathrm{t}_{6-1-} \\ & \mathrm{t}_{7+1+} \\ & \mathrm{t}_{7-1-} \\ & \mathrm{t}_{7+3-} \\ & \mathrm{t}_{7-3+} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 3 \\ & 3 \end{aligned}$		9 9 9 9 9 9	$\begin{aligned} & \hline 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$			$\begin{aligned} & \hline 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \end{aligned}$
Rise Time (20 to 80\%)		1		9	8			16
Fall Time (20 to 80\%)	t_{1} -	1		9	8			16

1. See switching time test circuit. Propagation delay for this circuit is specified from +1.5 Vdc in to the 50% point on the output waveform. The +3.5 Vdc is shown here because all logic and supply levels are shifted 2 volts positive.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

SWITCHING TIME TEST CIRCUIT

NOTE: All power supply and logic levels are shown shifted 2 volts positive.

OUTLINE DIMENSIONS

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and $\mathbb{(4)}$ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447

Mfax ${ }^{\text {TM }: ~ R M F A X 0 @ e m a i l . s p s . m o t . c o m ~-~ T O U C H T O N E ~ 602-244-6609 ~}$
INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

