

M6MFB/T16S2TP

PRELIMINARY

Notice: This is not a final specification.

Some parametric limits are subject to change.

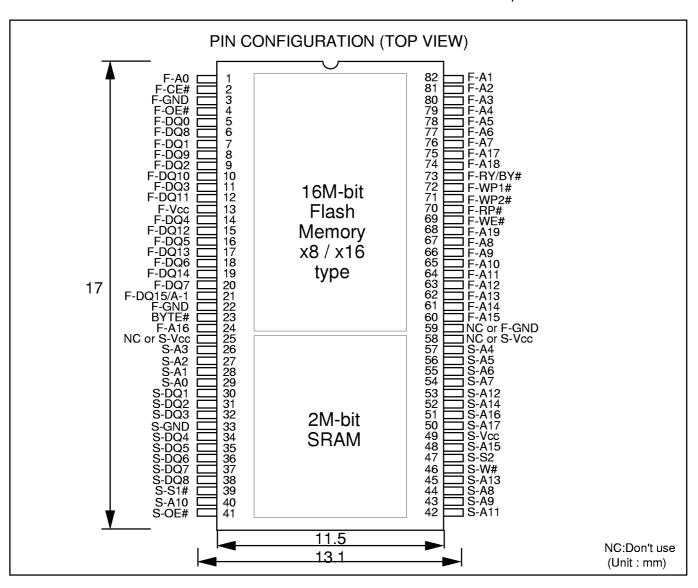
16777216-BIT (2M x 8-BIT / 1M x 16-BIT) CMOS 3.3V-ONLY FLASH MEMORY & 2097152-BIT (256k x 8-BIT) CMOS STATIC RAM MCP (Multi Chip Package)

DESCRIPTION

The MITSUBISHI M6MFB/T16S2TP is a Multi Chip Package (MCP) that contents 16-Mbit Flash memory and 2M-bit Static RAM in a 82-pin TSOP(TYPE-II).

16M-bit Flash memory is a 2097152 bytes/1048572 words, 3.3V-only, and high performance non-volatile memory fabricated by CMOS technology for the peripheral circuit and DINOR(DIvided bit-line NOR) architecture for the memory cell.

2M-bit SRAM is a 262144 bytes unsynchronous SRAM fabricated by silicon-gate CMOS technology.

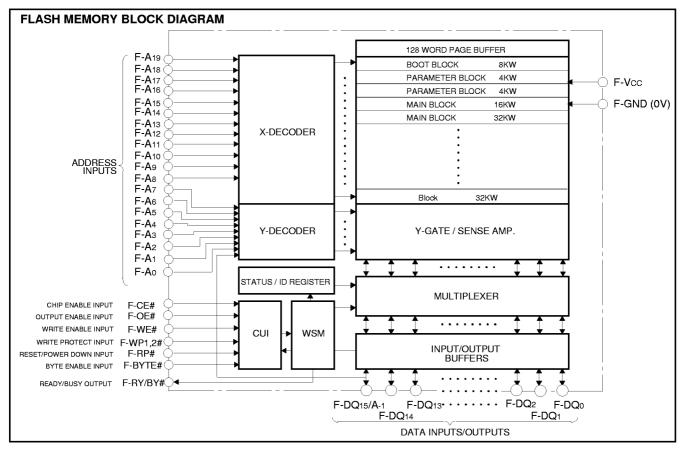

M6MFB/T16S2TP is suitable for the application of the mobile-communication-system to reduce both the mount space and weight.

FEATURES

- Flash memory, SRAM Access time ----- 110ns (Max.)
- Supply voltage ----- Vcc=2.7 ~ 3.6V
- Ambient temperature ----- Ta=-20 ~ 85°C
- Flash Memory / SRAM : Operates individually
- Package: 82-pin TSOP (Type-II), 0.4mm lead pitch

APPLICATION

Mobile communication products



Notice: This is not a final specification.

Some parametric limits are subject to change.

M6MFB/T16S2TP

16777216-BIT (2M x 8-BIT/1M x 16-BIT)
CMOS 3.3V-ONLY FLASH MEMORY

FUNCTION

The flash memory of M6MFT/B16S2TP includes on-chip program/erase control circuitry. The Write State Machine (WSM) controls block erase and page program operations. Operational modes are selected by the commands written to the Command User Interface (CUI). The Status Register indicates the status of the WSM and when the WSM successfully completes the desired program or block erase operation.

A Deep Powerdown mode is enabled when the F-RP# pin is at GND, minimizing power consumption.

Read

The flash memory of M6MFT/B16S2TP has three read modes, which accesses to the memory array, the Device Identifier and the Status Register. The appropriate read command are required to be written to the CUI. Upon initial device powerup or after exit from deep powerdown, the flash memory automatically resets to read array mode. In the read array mode, low level input to F-CE# and F-OE#, high level input to F-WE# and F-RP#, and address signals to the address inputs (F-A0-19) output the data of the addressed location to the data input/output(F-DQ0-15).

Write

Writes to the CUI enables reading of memory array data, device identifiers and reading and clearing of the Status Register. They also enable block erase and program. The CUI is written by bringing F-WE# to low level, while F-CE# is at low level and F-OE# is at high level. Address and data are latched on the earlier rising edge of F-WE# and F-CE#. Standard micro-processor write timings are used.

Output Disable

When F-OE# is at V_{IH}, output from the devices is disabled. Data input/output are in a high-impedance(High-Z) state.

Standby

When F-CE# is at V_H , the device is in the standby mode and its power consumption is reduced. Data input/output are in a high-impedance(High-Z) state. If the memory is deselected during block erase or program, the internal control circuits remain active and the device consume normal active power until the operation completes.

Automatic Power Saving

When addresses remain stable for about 300ns(T.B.D), the device enters the automatic power saving mode. While in power saving mode, output data is latched and always available to the system.

Deep Power-Down

When F-RP# is at $V_{\rm IL}$, the device is in the deep powerdown mode and its power consumption is substantially low. During read modes, the memory is deselected and the data input/output are in a high-impedance(High-Z) state. After return from powerdown, the CUI is reset to Read Array , and the Status Register is cleared to value 80H.

During block erase or program modes, F-RP# low will abort either operation. Memory array data of the block being altered become invalid.

Notice: This is not a final specification. Some parametric limits are subject to change.

MITSUBISHI LSIs M6MFB/T16S2TP

16777216-BIT (2M x 8-BIT/1M x 16-BIT) **CMOS 3.3V-ONLY FLASH MEMORY**

SOFTWARE COMMAND DEFINITIONS

The device operations are selected by writing specific software command into the Command User Interface.

Read Array Command (FFH)

The device is in Read Array mode on initial device powerup and after exit from deep powerdown, or by writing FFH to the Command User Interface. The device remains in Read Array mode until the other commands are written.

Read Device Identifier Command (90H)

The Device Identifier is read after writing the Read Device Identifier command of 90H to the Command User Interface. Following the command write, the manufacturer code and the device code can be read from address 000000H and 000001H, respectively. Additionally, The Device Identifier is read by rising F-A9 to high voltage for PROM programmers.

Read Status Register Command (70H)

The Status Register is read after writing the Read Status Register command of 70H to the Command User Interface.

The contents of Status Register are latched on the later falling edge of F-OE# or F-CE#. So F-CE# or F-OE# must be toggled every status read.

Clear Status Register Command (50H)

The Erase Status and Program Status bits are set to "1"s by the Write State Machine and can only be reset by the Clear Status Register command of 50H. These bits indicates various failure conditions.

Block Erase / Confirm Command (20H/D0H)

Automated block erase is initiated by writing the Block Erase command of 20H followed by the Confirm command of D0H. An address within the block to be erased is required. The WSM executes iterative erase pulse application and erase verify operation.

Page Program Commands(41H)

Page Program allows fast programming of 128words of data in word-wide mode. Writing of 41H initiates the page program operation. From 2nd cycle to 129th cycle write data must be serially inputted. Address A6-0 have to be incremented from 00H to 7FH. After completion of data loading, the WSM controls the program pulse application and verify operation.

Basically re-program must not be done on a page which has already programmed.

Suspend/Resume Command (B0H/D0H)

Writing the Suspend command of B0H during block erase operation interrupts the block erase operation and allows read out from another block of memory. Writing the Suspend command of B0H during program operation interrupts the program operation and allows read out from another block of memory. The device continues to output Status Register data when read, after the Suspend command is written to it. Polling the WSM Status and Suspend Status bits will determine when the erase operation or program operation has been suspended. At this point, writing of

the Read Array command to the CUI enables reading data from blocks other than that which is suspended. When the Resume command of D0H is written to the CUI, the WSM will continue with the erase or program processes.

DATA PROTECTION

The flash memory of M6MFB/T16S2TP provides hardware-locking of boot block, when F-WP1# is fixed to GND, boot block and all main blocks, when F-WP2# is fixed to GND, all blocks, when F-WP1# and F-WP2# are fixed to GND, and selectable block locking of parameter/main blocks by the lock-bit state.

Hardware-locking is pevented from any modifications

Power Supply Voltage

When the power supply voltage (Vcc) is less than 2.2V, the device is set to the Read-only mode.

A delay time of 2 us is required before any device operation is initiated. The delay time is measured from the time Vcc reaches Vccmin.

During power up, F-RP#=GND is recommended. Falling in Busy status is not recommended for possibility of damaging the device.

May. 1998, Rev.1.4 MITCHDICHI

Notice: This is not a final specification. Some parametric limits are subject to change.

M6MFB/T16S2TP

16777216-BIT (2M x 8-BIT/1M x 16-BIT) **CMOS 3.3V-ONLY FLASH MEMORY**

x8 (Bytemode)	x16 (Wordmode)	
1F0000H-1FFFFFH	F8000H-FFFFFH	32Kword BLOCK
1E0000H-1EFFFFH	F0000H-F7FFFH	32Kword BLOCK
1D0000H-1DFFFFH	E8000H-EFFFFH	32Kword BLOCK
1C0000H-1CFFFFH	E0000H-E7FFFH	32Kword BLOCK
1B0000H-1BFFFFH	D8000H-DFFFFH	32Kword BLOCK
1A0000H-1AFFFFH	D0000H-D7FFFH	32Kword BLOCK
190000H-19FFFFH	C8000H-CFFFFH	32Kword BLOCK
180000H-18FFFFH	C0000H-C7FFFH	32Kword BLOCK
040000H-04FFFFH	20000H-27FFFH	32Kword BLOCK
030000H-03FFFFH	18000H-1FFFFH	32Kword BLOCK
020000H-02FFFFH	10000H-17FFFH	32Kword BLOCK
010000H-01FFFFH	08000H-0FFFFH	32Kword BLOCK
008000H-00FFFFH	04000H-07FFFH	16Kword BLOCK
006000H-007FFFH	03000H-03FFFH	4Kword PARAMETER BLOCK
004000H-005FFFH	02000H-02FFFH	4Kword PARAMETER BLOCK
000000H-003FFFH	00000H-01FFFH	8Kword BOOT BLOCK

F-A-1~F-A19(Bytemode) F-A0~F-A19(Wordmode)			
M6MFB16S2TP	riasn	wemory	wap

x8 (Bytemode) x16 (Wordmode) 1FC000H-1FFFFFH FE000H-FFFFFH 1FA000H-1FFFFFH FE000H-FFFFFH 1F8000H-1F9FFFH FC000H-FCFFFH 1F0000H-1F7FFFH F8000H-FFFFH 1E0000H-1FFFFH F8000H-FFFFH 1D0000H-1DFFFFH E8000H-EFFFFH 1D0000H-1DFFFFH E8000H-EFFFFH 1C0000H-1CFFFFH E8000H-EFFFFH 1B0000H-1BFFFFH D8000H-DFFFFH 1A0000H-1AFFFFH D8000H-DFFFFH 32Kword BLOCK 32Kword BLOCK		
1FA000H-1FBFFFH FD000H-FDFFFH 4Kword PARAMETER BLOCK 1F8000H-1F9FFFH FC000H-FCFFFH 4Kword PARAMETER BLOCK 1F0000H-1F7FFFH F8000H-FBFFFH 16Kword BLOCK 1D0000H-1DFFFFH E8000H-EFFFFH 32Kword BLOCK 1C0000H-1CFFFFH E8000H-EFFFFH 32Kword BLOCK 1B0000H-1BFFFFH D8000H-DFFFFH 32Kword BLOCK 1A0000H-1AFFFFH D8000H-DFFFFH 32Kword BLOCK 060000H-06FFFFH 28000H-2FFFFH 32Kword BLOCK 040000H-04FFFFH 28000H-2FFFFH 32Kword BLOCK 03000H-03FFFFH 18000H-1FFFFH 32Kword BLOCK 02000H-02FFFFH 10000H-1FFFFH 32Kword BLOCK 02000H-02FFFFH 10000H-1FFFFH 32Kword BLOCK 02000H-02FFFFH 10000H-1FFFFH 32Kword BLOCK	x16 (Wordmode)	
1F8000H-1F9FFFH FC000H-FCFFFH 4Kword PARAMETER BLOCK 1F0000H-1F7FFFH F8000H-FBFFFH 16Kword BLOCK 1D0000H-1DFFFFH F6000H-F7FFFH 32Kword BLOCK 1D0000H-1DFFFFH E8000H-EFFFFH 32Kword BLOCK 1B0000H-1BFFFFH D8000H-DFFFFH 32Kword BLOCK 1A0000H-1AFFFFH D8000H-DFFFFH 32Kword BLOCK 060000H-06FFFFH 30000H-37FFFH 32Kword BLOCK 050000H-04FFFFH 28000H-2FFFFH 32Kword BLOCK 03000H-03FFFFH 18000H-1FFFFH 32Kword BLOCK 02000H-02FFFFH 10000H-17FFFH 32Kword BLOCK 02000H-02FFFFH 10000H-17FFFH 32Kword BLOCK 03Kword BLOCK 32Kword BLOCK	FE000H-FFFFFH 8Kwor	d BOOT BLOCK
1F0000H-1F7FFFH F8000H-FBFFFH 16Kword BLOCK 1E0000H-1EFFFFH F0000H-F7FFFH 32Kword BLOCK 1D0000H-1DFFFFH E8000H-EFFFFH 32Kword BLOCK 1C0000H-1CFFFFH E0000H-E7FFFH 32Kword BLOCK 1B0000H-1BFFFFH D8000H-D7FFFH 32Kword BLOCK 1A0000H-1AFFFFH D0000H-D7FFFH 32Kword BLOCK 050000H-05FFFFH 28000H-2FFFFH 32Kword BLOCK 040000H-04FFFFH 20000H-27FFFH 32Kword BLOCK 030000H-03FFFFH 18000H-1FFFFH 32Kword BLOCK 020000H-02FFFFH 10000H-17FFFH 32Kword BLOCK 020000H-02FFFFH 08000H-0FFFFH 32Kword BLOCK	FD000H-FDFFFH 4Kword F	ARAMETER BLOCK
1E0000H-1EFFFFH F0000H-F7FFFH 32Kword BLOCK 1D0000H-1DFFFFH E8000H-EFFFFH 32Kword BLOCK 1C0000H-1CFFFFH E0000H-E7FFFH 32Kword BLOCK 1B0000H-1BFFFFH D8000H-DFFFFH 32Kword BLOCK 1A0000H-1AFFFFH D0000H-D7FFFH 32Kword BLOCK 060000H-06FFFFH 30000H-37FFFH 32Kword BLOCK 050000H-04FFFFH 28000H-2FFFFH 32Kword BLOCK 030000H-03FFFFH 18000H-1FFFFH 32Kword BLOCK 020000H-02FFFFH 10000H-17FFFH 32Kword BLOCK 020000H-02FFFFH 08000H-0FFFFH 32Kword BLOCK	FC000H-FCFFFH 4Kword F	ARAMETER BLOCK
1D0000H-1DFFFFH E8000H-EFFFFH 32Kword BLOCK 1C0000H-1CFFFFH E0000H-EFFFFH 32Kword BLOCK 1B0000H-1BFFFFH D8000H-DFFFFH 32Kword BLOCK 1A0000H-1AFFFFH D0000H-DFFFFH 32Kword BLOCK 060000H-06FFFFH 30000H-37FFFH 32Kword BLOCK 050000H-05FFFFH 28000H-2FFFFH 32Kword BLOCK 030000H-03FFFFH 18000H-1FFFFH 32Kword BLOCK 020000H-02FFFFH 10000H-17FFFH 32Kword BLOCK 010000H-01FFFFH 08000H-0FFFFH 32Kword BLOCK	F8000H-FBFFFH 16I	Kword BLOCK
1C0000H-1CFFFFH E0000H-E7FFFH 32Kword BLOCK 1B0000H-1BFFFFH D8000H-DFFFFH 32Kword BLOCK 1A0000H-1AFFFFH D0000H-D7FFFH 32Kword BLOCK 060000H-06FFFFH 28000H-2FFFFH 32Kword BLOCK 040000H-04FFFFH 20000H-27FFFH 32Kword BLOCK 030000H-03FFFFH 18000H-1FFFFH 32Kword BLOCK 020000H-02FFFFH 10000H-17FFFH 32Kword BLOCK 010000H-01FFFFH 08000H-0FFFFH 32Kword BLOCK	F0000H-F7FFFH 32	Kword BLOCK
180000H-18FFFFH D8000H-DFFFFH 32Kword BLOCK 1A0000H-1AFFFFH D0000H-D7FFFH 32Kword BLOCK 060000H-06FFFFH 30000H-37FFFH 32Kword BLOCK 050000H-05FFFFH 28000H-2FFFFH 32Kword BLOCK 040000H-04FFFFH 20000H-27FFFH 32Kword BLOCK 030000H-03FFFFH 18000H-1FFFFH 32Kword BLOCK 020000H-02FFFFH 10000H-17FFFH 32Kword BLOCK 010000H-01FFFFH 08000H-0FFFFH 32Kword BLOCK	E8000H-EFFFFH 32	Kword BLOCK
1A0000H-1AFFFFH D0000H-D7FFFH 32Kword BLOCK 060000H-06FFFFH 30000H-37FFFH 32Kword BLOCK 050000H-05FFFFH 28000H-2FFFFH 32Kword BLOCK 040000H-04FFFFH 20000H-27FFFH 32Kword BLOCK 030000H-03FFFFH 18000H-1FFFFH 32Kword BLOCK 020000H-02FFFFH 10000H-17FFFH 32Kword BLOCK 010000H-01FFFFH 08000H-0FFFFH 32Kword BLOCK	E0000H-E7FFFH 32	Kword BLOCK
060000H-06FFFFH 30000H-37FFFH 32Kword BLOCK 050000H-05FFFFH 28000H-2FFFFH 32Kword BLOCK 040000H-04FFFFH 20000H-27FFFH 32Kword BLOCK 030000H-03FFFFH 18000H-1FFFFH 32Kword BLOCK 020000H-02FFFFH 10000H-17FFFH 32Kword BLOCK 010000H-01FFFFH 08000H-0FFFFH 32Kword BLOCK	D8000H-DFFFFH 32	Kword BLOCK
050000H-05FFFFH 28000H-2FFFFH 32Kword BLOCK 040000H-04FFFFH 20000H-27FFFH 32Kword BLOCK 030000H-03FFFFH 18000H-1FFFFH 32Kword BLOCK 020000H-02FFFFH 10000H-17FFFH 32Kword BLOCK 010000H-01FFFFH 08000H-0FFFFH 32Kword BLOCK	D0000H-D7FFFH 32	Kword BLOCK
050000H-05FFFFH 28000H-2FFFFH 32Kword BLOCK 040000H-04FFFFH 20000H-27FFFH 32Kword BLOCK 030000H-03FFFFH 18000H-1FFFFH 32Kword BLOCK 020000H-02FFFFH 10000H-17FFFH 32Kword BLOCK 010000H-01FFFFH 08000H-0FFFFH 32Kword BLOCK		
040000H-04FFFFH 20000H-27FFFH 32Kword BLOCK 030000H-03FFFFH 18000H-1FFFFH 32Kword BLOCK 020000H-02FFFFH 10000H-17FFFH 32Kword BLOCK 010000H-01FFFFH 08000H-0FFFFH 32Kword BLOCK	30000H-37FFFH 32	Kword BLOCK
030000H-03FFFFH 18000H-1FFFFH 32Kword BLOCK 020000H-02FFFFH 10000H-17FFFH 32Kword BLOCK 010000H-01FFFFH 08000H-0FFFFH 32Kword BLOCK	28000H-2FFFFH 32	Kword BLOCK
020000H-02FFFFH 10000H-17FFFH 32Kword BLOCK 010000H-01FFFFH 08000H-0FFFFH 32Kword BLOCK	20000H-27FFFH 32	Kword BLOCK
010000H-01FFFFH 08000H-0FFFFH 32Kword BLOCK	18000H-1FFFFH 32	Kword BLOCK
	10000H-17FFFH 32	Kword BLOCK
000000H-00FFFFH 00000H-07FFFH 32Kword BLOCK	08000H-0FFFFH 32	Kword BLOCK
	00000H-07FFFH 32	Kword BLOCK

F-A-1~F-A19(Bytemode) F-A0~F-A19(Wordmode)

M6MFT16S2TP Flash Memory Map

BUS OPERATIONS

Bus Operations for Word-Wide Mode (F-BYTE#=VIH)

Mode	Pins	F-CE#	F-OE#	F-WE#	F-RP#	F-DQ0-15	F-RY/BY#
	Array	VIL	VIL	VIH	VIH	Data out	Voh (Hi-Z)
Read	Status Register	VIL	VIL	Vін	ViH	Status Register Data	X ¹⁾
	Lock Bit Status	Vı∟	Vı∟	VIH	VIH	Lock Bit Data (DQ6)	X
	Identifier Code	VIL	VIL	VıH	ViH	Identifier Code	Voh (Hi-Z)
Output d	isable	VIL	VIH	VIH	VIH	Hi-Z	Х
Stand by	1	VIH	X ²⁾	Х	VIH	Hi-Z	Х
•	Program	VIL	Vін	VIL	VIH	Command/Data in	Х
Write	Erase	VIL	VIH	VIL	VIH	Command	Х
	Others	VIL	VIH	VIL	VIH	Command	Х
Deep Po	wer Down	Х	Х	Х	VIL	Hi-Z	Voh (Hi-Z)

Bus Operations for Byte-Wide Mode (F-BYTE#=VIL)

Mode	Pins	F-CE#	F-OE#	F-WE#	F-RP#	F-DQ0-7	F-RY/BY#
	Array	VIL	VIL	VIH	ViH	Data out	Voh (Hi-Z)
Read	Status Register	VIL	VIL	Vін	VIH	Status Register Data	X ¹⁾
	Lock Bit Status	VIL	VIL	VIH	VIH	Lock Bit Data (DQ6)	Х
	Identifier Code	VIL	VIL	Vін	ViH	Identifier Code	V OH (Hi-Z)
Output di	sable	V IL	VIH	VIH	VIH	Hi-Z	X
Stand by		VIH	X 2)	Х	VIH	Hi-Z	Х
	Program	VIL	VIH	VIL	VIH	Command/Data in	Х
Write	Erase	VIL	VIH	VIL	VIH	Command	X
	Others	V⊩	V IH	VIL	ViH	Command	Χ
Deep Po	wer Down	X	X	Х	VIL	Hi-Z	V OH (Hi-Z)

¹⁾ X at F-RY/BY# is VOL or VOH(Hi-Z).

*The F-RY/BY# is an open drain output pin and indicates status of the internal WSM. When low,it indicates that the WSM is Busy performing an operation.

A pull-up resistor of 10K-100K Ohms is required to allow the F-RY/BY# signal to transition high indicating a Ready WSM condition.

2) X can be ViH or VIL for control pins.

M6MFB/T16S2TP

16777216-BIT (2M x 8-BIT/1M x 16-BIT) **CMOS 3.3V-ONLY FLASH MEMORY**

SOFTWARE COMMAND DEFINITION Command List

		1st bus cycl	е	2nd bus cycle			3rd bus cycle		
Command	Mode	Address	Data (F-DQ7-0)	Mode	Address	Data (F-DQ7-0)	Mode	Address	Data (F-DQ7-0)
Read Array	Write	Х	FFH						
Device Identifier	Write	Х	90H	Read	IA ²⁾	ID ²⁾			
Read Status Register	Write	Х	70H	Read	Х	SRD ³⁾			
Clear Status Register	Write	Х	50H						
Page Program 4)	Write	Х	41H	Write	WA0 ⁴⁾	WD0 ⁴⁾	Write	WA1	WD1
Block Erase / Confirm	Write	Х	20H	Write	BA ⁵⁾	DOH			
Suspend	Write	Х	В0Н						
Resume	Write	Х	DOH						
Read Lock Bit Status	Write	Х	71H	Read	BA	DQ6 ⁶⁾			
Lock Bit Program / Confirm 7)	Write	Х	77H	Write	ВА	DOH			
Erase All Unlocked Blocks	Write	Х	A7H	Write	Х	DOH			
Sleep 8)	Write	Х	F0H						

- 1) In the word-wide mode, upper byte data (F-DQ8-F-DQ15) is ignored.
 2) IA=ID Code Address: F-A0=VII. (Manufacturer's Code): F-A0=VIH (Device Code), ID=ID Code, F-BYTE# =VIL: F-A-1, F-A1*= VIL, F-BYTE# =VIH: F-A1*-F-A1*B = VIL
 3) SRD = Status Register Data
 4) WA=Write Address, WD=Write Data.
 F-BYTE# =VIL: Write Address and Write Data must be provided sequentially from 00H to FFH for F-A-1*-A6. Page size is 256Byte (256byte x 8bit), F-BYTE# =VIH: Write Address and Write Data must be provided sequentially from 00H to 7FH for F-A0*-F-A6. Page size is 128word (128word x 16bit).
 5) BA = Block Address.
 6) DO6 provides Block Lock Status DO6 = 1 : Block Holesh DO6 = 0 : Block Lock of Status DO6 = 1 : Block Holesh DO6 = 0 : Block Lock of Status DO6 = 1 : Block Holesh DO6 = 1 : Bl

- 5) BA = Block Address
 6) DQ6 provides Block Lock Status, DQ6 = 1 : Block Unlock, DQ6 = 0 : Block Locked.
 7) Must be set F-RP# to VHH and F-WP# to VIH.
 8) Sleep command (F0H) put the device into the sleep mode after completing the current operation. The active current is reduced to deep power -down levels. The Read Array command (FFH) must be written to get the device out of sleep mode.

BLOCK LOCKING

F-RP#	F-WP1#	F-WP2#	Boot Block	Parameter Block	Main Block	Lock Bit	Write Protection Provided
Vнн	х	х	Unlock	Unlock	Unlock	Unlock	All Blocks/LockBits Unlocked (Erase/Program enable)
V⊪	VIH	VIH	Unlock	Unlock	Unlock	Unlock	All Blocks/LockBits Unlocked (Erase/Program enable)
Vн	VIH	VIL	Lock	Depend on Lock Bit data1)	Lock	Lock	Boot block and Main block block (hard)locked, and Parameter block locked by Lock Bit.
Vн	VIL	VIH	Lock	Depend on Lock Bit data 1)	Depend on Lock Bit data 1)	Lock	Boot block (hard)locked, and other blocks locked by Lock Bit.
V⊩	Vı∟	VIL	Lock	Lock	Lock	Lock	All Blocks/LockBits (hard)locked
Vı∟	х	х	Lock	Lock	Lock	Lock	All Blocks/LockBits locked (Deep Power Down Mode)

- 1) When the Lock bit is "0", its block cannot be programed and erased.
 Lock bit is set to "0" by LOCK BIT PROGRAM.
 Locked bit("0") is cleared to "1" with block memory by BLOCK ERASE on setting unlock mode.
 2) F-DQs provides Lock Status of each block after writing the Read Lock Status command(71H).
 3) F-WP#(1,2) pin must not be switched during performing Read/Write operations or WSM Busy (WSMS=0).

STATUS REGISTER

Symbol	Status	Definition					
Symbol	Status	"1"	"0"				
SR.7 (DQ7)	Write State Machine Status	Ready	Busy				
SR.6 (DQ6)	Suspend Status	Suspended	Operation in Progress / Completed				
SR.5 (DQ ₅)	Erase Status	Error	Successful				
SR.4 (DQ4)	Program Status	Error	Successful				
SR.3 (DQ ₃)	Block Status after Program	Error	Successful				
SR.2 (DQ2)	Reserved	-	-				
SR.1 (DQ1)	Reserved	-	-				
SR.0 (DQ ₀)	Device Sleep Status	Device in Sleep	Device Not in Sleep				

^{*}The F-RY/BY# is an open drain output pin and indicates status of the internal WSM. When low, it indicates that the WSM is Busy performing an operation. A pull-up resistor of 10K-100K Ohms is required to allow the F-RY/BY# signal to transition high indicating a Ready WSM condition.

^{*}F-DQ3 indicates the block status after the page programming. When F-DQ3 is "1", the page has the over-programed cell . If over-program occures, the device is block fail. However if F-DQ3 is "1", please try the block erase to the block. The block may revive.

6

PRELIMINARY

Notice: This is not a final specification. Some parametric limits are subject to change.

M6MFB/T16S2TP

16777216-BIT (2M x 8-BIT/1M x 16-BIT) **CMOS 3.3V-ONLY FLASH MEMORY**

DEVICE IDENTIFIER CODE

Code Pins	F-Ao	F-DQ7	F-DQ6	F-DQ5	F-DQ4	F-DQ3	F-DQ2	F-DQ1	F-DQo	Hex. Data
Manufacturer Code	VIL	0	0	0	1	1	1	0	0	1CH
Device Code (-T)	VIH	0	1	1	0	0	0	1	0	62H
Device Code (-B)	VIH	0	1	1	0	0	1	0	0	64H

In the word-wide mode, F-DQ15-8 = 00H.
F-A9 = VHH Mode: F-A9 = 11.4V~12.6V Set F-A9 to VHH min.200ns before falling edge of F-CE in ready status. Min.200ns after return to VIH ,device can't be accessed.
F-A1~F-A8, F-A10~F-A18, F-CE#,F-OE# = VIL, F-WE# = VIH
F-DQ15/A-1 = VIL (F-BYTE# = L)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Min	Max	Unit
F-Vcc	Vcc voltage (Flash Memory)		-0.2	4.6	V
VI1	All input or output voltage except V∞,A9,RP# 1)	With respect to Ground	-0.6	4.6	V
V ₁₂	A9,RP# supply voltage		-0.6	14.0	V
Ta	Ambient temperature		-20	85	°C
Tbs	Temperature under bias		-30	95	°C
Tstg	Storage temperature		-65	125	°C
Гоит	Output short circuit current			100	mA

¹⁾ Minimum DC voltage is -0.5V on input/output pins. During transitions, this level may undershoot to -2.0V for periods <20ns. Maximum DC voltage on input/output pins is Vcc+0.5V which, during transitions, may overshoot to Vcc+1.5V for periods <20ns.

CAPACITANCE

Comple el	Parameter	T4		Limits		
Symbol Cin Ir	Falametel	Test conditions	Min	Тур	Max	Unit
CIN	Input capacitance (Address, Control Pins)	Ta = 25°C, f = 1MHz, Vn = Vout = 0			8	pF
Соит	Output capacitance	14 = 23 G, $1 = 1101 Hz$, while vout = 00			12	pF

DC ELECTRICAL CHARACTERISTICS (Ta = -20 ~ 85 °C, Vcc = 2.7V ~ 3.6V, unless otherwise noted)

Cumbal	Parameter	Test conditions		Limits			
Symbol	raiailletei	l est conditions	Min	Typ1)	Max	Unit	
ILI	Input leakage current	0V ≤ VIN ≤ F-Vcc			±1.0	μΑ	
ILO	Output leakage current	0V ≤ Vouт ≤ F-Vcc			±10	μΑ	
ISB1	Vcc standby current	F-Vcc=3.6V, VIN=VIL/VIH, F-CE#=F-RP#=F-WP1,2#=VIH		50	200	μΑ	
ISB2	Vec standby current	F-Vcc=3.6V,VIN=F-GNDorF-Vcc,F-CE#=F-RP#=F-WP1,2#=F-Vcc±0.3V		0.1	5	μΑ	
ISB3	Vcc deep powerdown current	F-Vcc = 3.6V, Vin=Vil/Vih, F-RP# = Vil		5	15	μΑ	
ISB4	Vec deep powerdown current	F-Vcc = 3.6V, VIN=F-GND or F-Vcc, F-RP# =F-GND±0.3V		0.1	5	μΑ	
Icc1	Vcc read current for Word or Byte	F-Vcc = 3.6V, Vin=Vil/ViH, F-CE# = ViL, F-RP# = F-OE# = ViH, f = 5MHz, lout = 0mA		7	25	mA	
Icc2	Vcc Write current for Word or Byte	F-Vcc=3.6V, VIN=VIL/VIH, F-CE#=F-WE#=VIL, F-RP#=F-OE#=VIH			25	mΑ	
Іссз	Vcc program current	F-Vcc = 3.6V, VIN=VIL/VIH, F-CE# = F-RP# =F-WP1,2# = VIH			30	mΑ	
ICC4	Vcc erase current	F-Vcc = 3.6V, VIN=VIL/VIH, F-CE# = F-RP# =F-WP1,2# = VIH			40	mΑ	
ICC5	Vcc suspend current	F-Vcc = 3.6V, VIN=VIL/VIH, F-CE# = F-RP# =F-WP1,2# = VIH			200	μΑ	
Icc6	Automatic power saving	F-Vcc = 3.6V, VIN=F-GND or F-Vcc		0.1	5	μΑ	
IRP	F-RP# block unlock current	F-RP# = VIHH max			100	μΑ	
lid	F-A9 intelligent identifier current	F-A9 = VID max			100	μΑ	
VIHH	F-RP# block unlock voltage		11.4	12.0	12.6	٧	
VID	F-A9 intelligent identifier voltage		11.4	12.0	12.6	٧	
VIL	Input low voltage		- 0.5		0.8	٧	
VIH	Input high voltage		2.0		Vcc+0.5	V	
V OL	Output low voltage	IOL = 5.8mA			0.45	V	
V OH1	Output high voltage	Iон = −2.5mA	0.85Vcc			V	
V OH2	Output high voltage	$IOH = -100\mu A$	Vcc-0.4			V	
V LKO	Low Vcc Lock-Out voltage 2)		1.5		2.5	V	

All currents are in RMS unless otherwise noted.

1) Typical values at Vcc=3.3V, Ta=25°C

¹⁾ Typical Values at Voc=0.30, Ta=23 O
2) To protect against initiation of write cycle during Vcc power-up/ down, a write cycle is locked out for Vcc less than VLKO.

If Vcc is less than VLKO, Write State Machine is reset to read mode. When the Write State Machine is in Busy state, if Vcc is less than VLKO, the alteration of memory contents

Some parametric limits are subject to change.

M6MFB/T16S2TP

16777216-BIT (2M x 8-BIT/1M x 16-BIT) **CMOS 3.3V-ONLY FLASH MEMORY**

AC ELECTRICAL CHARACTERISTICS (Ta = -20 ~ 85 °C, Vcc = 2.7V ~ 3.6V, unless otherwise noted) **Read-Only Mode**

Cum	mbal	Parameter		Limits		I I mit
Syn	nbol	i didilielei	Min	Тур	Max	Unit
trc	tavav	Read cycle time	110			ns
ta (AD)	tavqv	Address access time			110	ns
ta (CE)	t ELQV	Chip enable access time			110	ns
ta (OE)	talav	Output enable access time			55	ns
tcLZ	t ELQX	Chip enable to output in low-Z	0			ns
tDF(CE)	t EHQZ	Chip enable high to output in high Z			30	ns
toLZ	tglax	Output enable to output in low-Z	0			ns
tDF(OE)	tghaz	Output enable high to output in high Z			30	ns
tPHZ	t PLQZ	F-RP# low to output high-Z			300	ns
ta(BYTE)	tFL/HQV	F-BYTE# access time			110	ns
tBHZ	tFLQZ	F-BYTE# low to output high-Z			30	ns
tон	tон	Output hold from F-CE#, F-OE#, addresses	0			ns
tBCD	telfl/H	F-CE# low to F-BYTE# high or low			5	ns
tBAD	tavfl/H	Address to F-BYTE# high or low			5	ns
toeh	tw HGL	F-OE# hold from F-WE# high	110			ns
tpwH	t PHEL	F-RP# high recovery to F-CE# low	500			ns

Timing measurements are made under AC waveforms for read operations.

AC ELECTRICAL CHARACTERISTICS (Ta = -20 ~ 85 °C, Vcc = 2.7V ~ 3.6V, unless otherwise noted)

Write Mode (WE control)

Symbol Para		Parameter		Limits			
Зуі	IIDOI	raametei	Min	Тур	Max		
twc	tavav	Write cycle time	110			ns	
tas	tavwh	Address set-up time	50			ns	
tah	twhax	Address hold time	10			ns	
tos	tovwh	Data set-up time	50			ns	
tDH	twhox	Data hold time	10			ns	
tcs	tELWL	Chip enable set-up time	0			ns	
tсн	twheh	Chip enable hold time	0			ns	
twp	twLwH	Write pulse width	60			ns	
twph	twhwL	Write pulse width high	20			ns	
tBS	t FL/H W H	Byte enable high or low set-up time	50			ns	
tвн	twHFL/H	Byte enable high or low hold time	110			ns	
tBLS	45	Disable and control with analysis high	110				
twps	tphhwh	Block Lock set-up to write enable high	110			ns	
t BLH	I a m	Disability of the late for the control of CDD	0				
twph	tavph	Block Lockhold from valid SRD	0			ns	
tDAP	twhRH1	Duration of auto-program operation		4	80	ms	
tDAE	twhRH2	Duration of auto-block erase operation		40	600	ms	
twhrl	twhrl	Write enable high to F-RY/BY# low			110	ns	
tPS	tPHWL	F-RP# high recovery to write enable low	500			ns	

Read timing parameters during command write operations mode are the same as during read-only operations mode. Typical values at F-Vcc=3.3V, Ta=25°C

M6MFB/T16S2TP

16777216-BIT (2M x 8-BIT/1M x 16-BIT) **CMOS 3.3V-ONLY FLASH MEMORY**

Notice: This is not a final specification. Some parametric limits are subject to change.

AC ELECTRICAL CHARACTERISTICS (Ta = -20 ~ 85 °C, Vcc = 2.7V ~ 3.6V, unless otherwise noted) Write Mode (CE control)

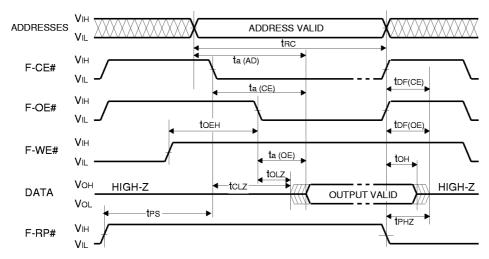
_				Limits		11,
Syr	mbol	Parameter	Min	Тур	Max	Unit
twc	tavav	Write cycle time	110			ns
tas	taveh	Address set-up time	50			ns
tah	tEHAX	Address hold time	10			ns
tos	toven	Data set-up time	50			ns
tDH	tendx	Data hold time	10			ns
tws	twlel	Write enable set-up time	0			ns
twн	tehwh	Write enable hold time	0			ns
tCEP	teleh	F-CE# pulse width	60			ns
tCEPH	tehel	F-CE# pulse width high	20			ns
tBS	tFL/HEH	Byte enable high or low set-up time	50			ns
t BH	tehfl/h	Byte enable high or low hold time	110			ns
tBLS	1	Diagle I and on to write analys birth	110			
twps	tPHHEH	Block Lock set-up to write enable high	110			ns
t BLH	tavph	Block Lockhold from valid SBD	0			
twph	IQVPH	Block Lockiloid Itolii Valid ShD				ns
tDAP	tehrh1	Duration of auto-program operation		4	80	ms
tDAE	tEHRH2	Duration of auto-block erase operation		40	600	ms
tehrl	tehrl	F-CE# enable high to F-RY/BY# low			110	ns
tps	tPHEL	F-RP# high recovery to write enable low	500			ns

Read timing parameters during command write operations mode are the same as during read-only operations mode. Typical values at Vc=3.3V, Ta=25 °C

Erase and Program Performance

Parameter	Min	Тур	Max	Unit
Block Erase Time		40	600	ms
Main Block Write Time (Page Mode)		1.3	5	sec
Page Write Time		4	80	ms

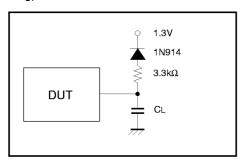
Vcc Power Up / Down Timing


Symbol	Parameter	Min	Тур	Max	Unit
tvcs	F-RP =V⊩ set-up time from Vccmin	2			μs

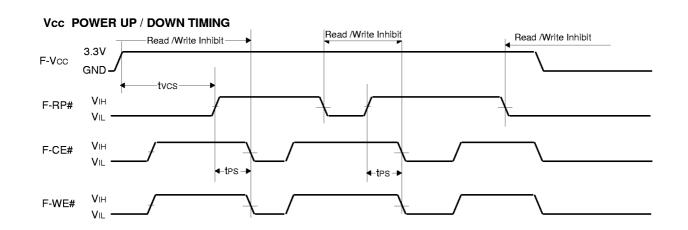
During power up/down, by the noise pulses on control pins, the device has possibility of accidental erasure or programming. The device must be protected against initiation of write cycle for memory contens during power up/down. The delay time of min.2usec is always required before read operation or write operation is initiated from the time Vcc reaches Vccmin during power up/down. By holding RP# VIL, the contens of memory is protected during Vcc power up/down. During power up, RP# must be held VIL for min.2us from the time Vcc reaches Vccmin. During power down, RP# must be held VIL until Vcc reaches GND. RP# doesn't have latch mode ,so RP# must be held VIH during read operation or erase/program operation.

May. 1998, Rev.1.4 MITCHDICH

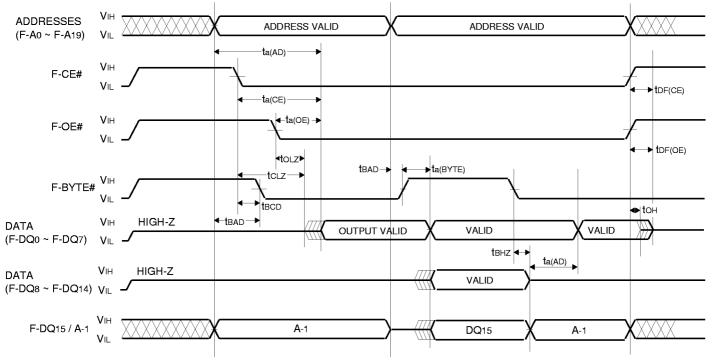
Notice: This is not a final specification. Some parametric limits are subject to change. 16777216-BIT (2M x 8-BIT/1M x 16-BIT) CMOS 3.3V-ONLY FLASH MEMORY


AC WAVEFORMS FOR READ OPERATION AND TEST CONDITIONS

TEST CONDITIONS FOR AC CHARACTERISTICS


Test Configuration		F-Vcc=2.7V ~ 3.6V
Input voltage	VIL	ov
Input voltage	VIH	3.0V
Input rise and fall times (10%-	90%)	5ns
Reference voltage at timing mea	surement	1.5V
Capacitance Load value	CL	100pF

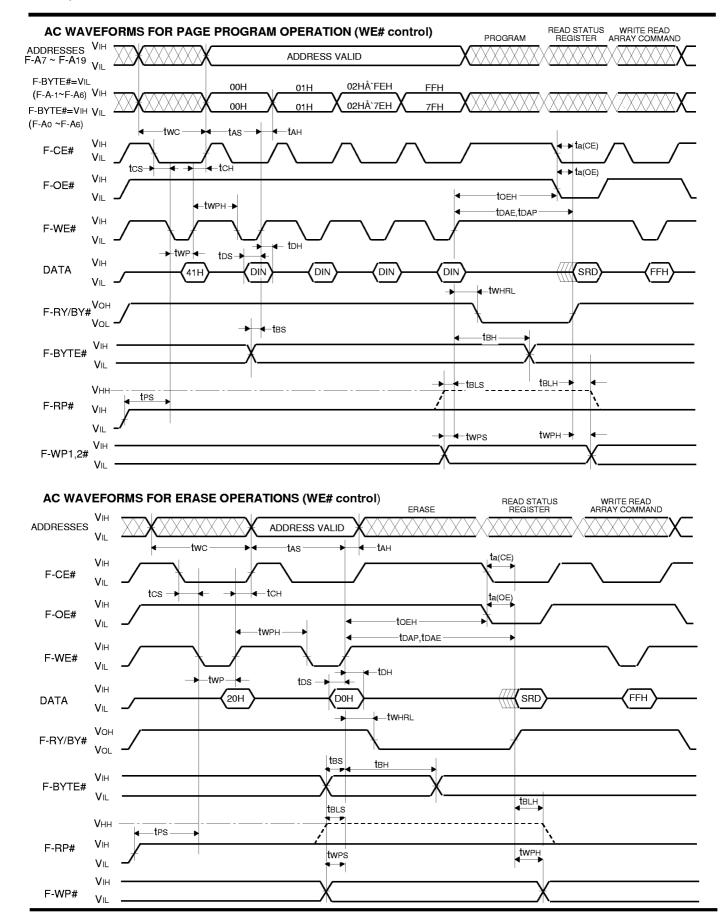
Output load : 1TTL gate + CL or



M6MFB/T16S2TP

Notice: This is not a final specification. Some parametric limits are subject to change. 16777216-BIT (2M x 8-BIT/1M x 16-BIT)
CMOS 3.3V-ONLY FLASH MEMORY

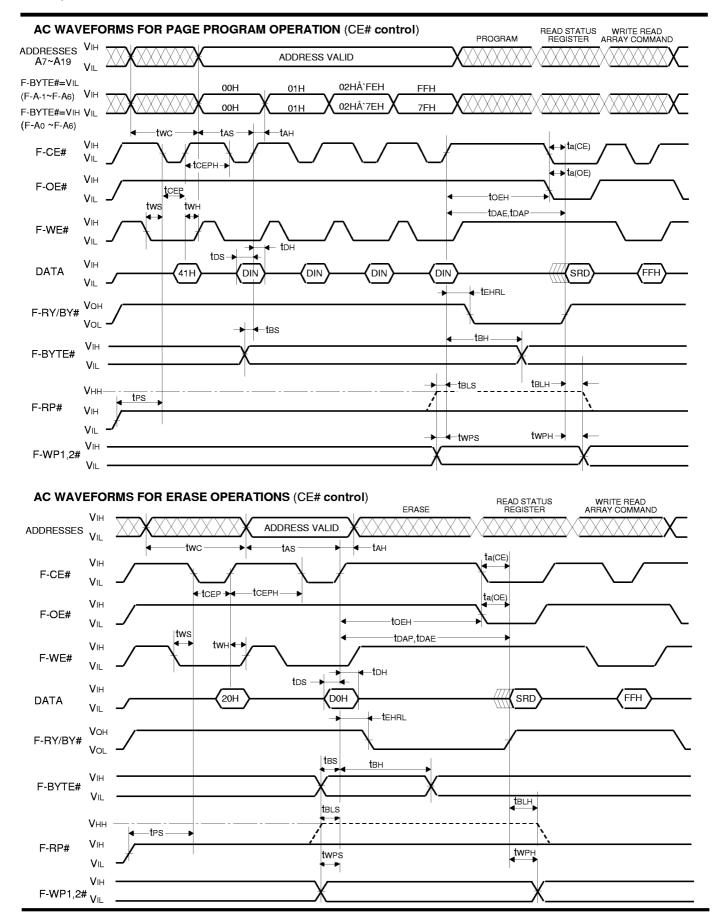
BYTE# AC WAVEFORMS FOR READ OPERATION



When F-BYTE#=VIH, F-CE#=F-OE#=VIL, DQ15/A-1 is output status. At this time, input signal must not be applied.

M6MFB/T16S2TP

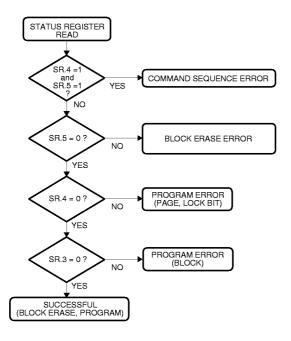
Notice: This is not a final specification.
Some parametric limits are subject to change.


16777216-BIT (2M x 8-BIT/1M x 16-BIT)
CMOS 3.3V-ONLY FLASH MEMORY

M6MFB/T16S2TP

Notice: This is not a final specification.
Some parametric limits are subject to change.

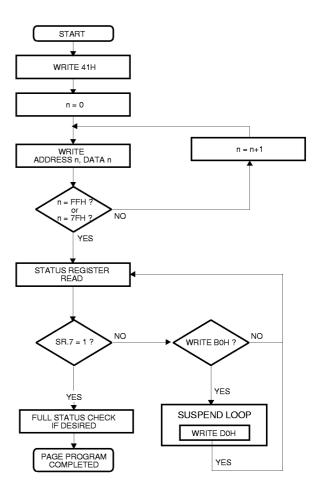
16777216-BIT (2M x 8-BIT/1M x 16-BIT)
CMOS 3.3V-ONLY FLASH MEMORY



Notice: This is not a final specification. Some parametric limits are subject to change.

M6MFB/T16S2TP

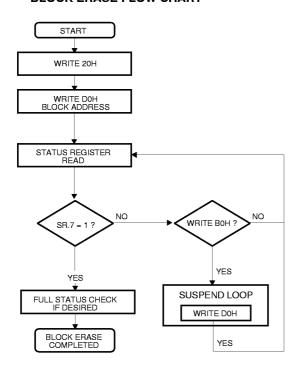
16777216-BIT (2M x 8-BIT/1M x 16-BIT)
CMOS 3.3V-ONLY FLASH MEMORY


FULL STATUS CHECK PROCEDURE

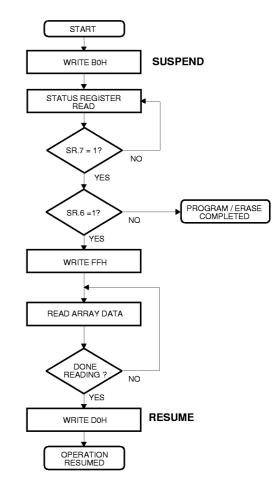
LOCK BIT PROGRAM FLOW CHART

START SET F-RP#=VIHH or F-WP1,2#=VIH WRITE 77H WRITE DOH BLOCK ADDRESS SR.7 = 1? NO YES SR.4 = 0? NO LOCK BIT PROGRAM FAILED LOCK BIT PROGRAM SUCCESSFUL

PAGE PROGRAM FLOW CHART


M6MFB/T16S2TP

16777216-BIT (2M x 8-BIT/1M x 16-BIT)
CMOS 3.3V-ONLY FLASH MEMORY


PRELIMINARY

Notice: This is not a final specification. Some parametric limits are subject to change.

BLOCK ERASE FLOW CHART

SUSPEND / RESUME FLOW CHART

Notice: This is not a final specification. Some parametric limits are subject to change.

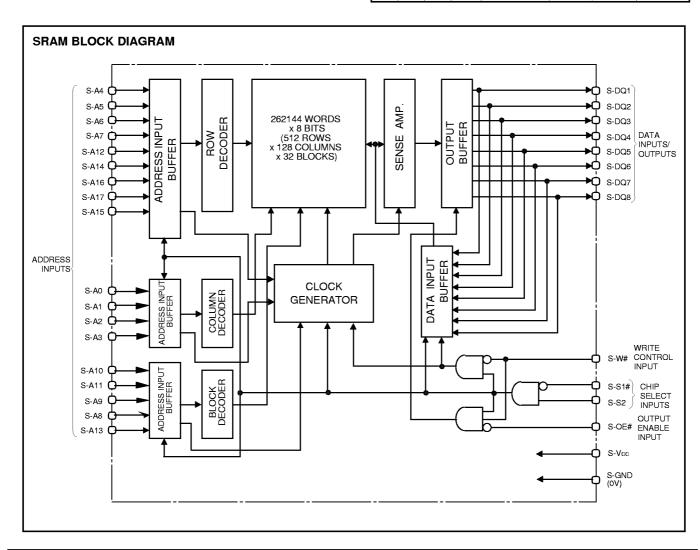
M6MFB/T16S2TP

2097152-BIT (256k x 8-BIT) CMOS STATIC RAM

FUNCTION

The SRAM of the M6MFT/B16S2TP operation mode is determined by a combination of the device control inputs S-S1#,S-S2,S-W# and S-OE#.

Each mode is summarized in the function table.


A write cycle is executed whenever the low level S-W# overlaps with the low level S-S1# and the high level S-S2. The address must be set up before the write cycle and must be stable during the entire cycle. The data is latched into a cell on the trailing edge of S-W#,S-S1# or S-S2,whichever occurs first,requiring the set-up and hold time relative to these edge to be maintained. The output enable input S-OE# directly controls the output stage. Setting the S-OE# at a high level, the output stage is in a high-impedance state, and the data bus contention problem in the write cycle is eliminated.

A read cycle is executed by setting S-W# at a high level and S-OE# at a low level while S-S1# and S-S2 are in an active state(S-S1#=L,S-S2=H).

When setting S-S1# at a high level or S-S2 at a low level, the chip are in a non-selectable mode in which both reading and writing are disabled. In this mode, the output stage is in a high-impedance state, allowing OR-tie with other chips and memory expansion by S-S1# and S-S2. The power supply current is reduced as low as the stand-by current which is specified as Icc3 or Icc4, and the memory data can be held at +2V power supply, enabling battery back-up operation during power failure or power-down operation in the non-selected mode.

FUNCTION TABLE

S-S1#	S-S2	S-W#	S-OE#	Mode	DQ	lcc
Х	L	Х	Х	Non selection	High-impedance	Stand-by
Н	Х	Х	Х	Non selection	High-impedance	Stand-by
L	Н	L	Χ	Write	Din	Active
L	Н	Н	L	Read	Dout	Active
L	Н	Н	Н		High-impedance	Active

MITSUBISHI LSIS M6MFB/T16S2TP

2097152-BIT (256k x 8-BIT) CMOS STATIC RAM

ABSOLUTE MAXIMUM RAPINGS

Symbol	Parameter	Conditions	Ratings	Unit
S-Vcc	Supply voltage (SRAM)		- 0.3* ~ 4.6	٧
Vı	Input voltage	With respect to GND	- 0.3* ~ Vcc + 0.5 (Max 4.6)	V
Vo	Output voltage		0 ~ Vcc	V
Pd	Power dissipation	Ta=25°C	700	mW
Topr	Operating temperature		-20 ~ 85	°C
Tstg	Storage temperature		− 65 ~ 150	°C

^{*} -3.0V in case of AC (Pulse width ≤ 30 ns)

DC ELECTRICAL CHARACTERISTICS (Ta=-20 ~ 85 °C, Vcc=2.7V~3.6V, unless otherwise noted)

Symbol	Parameter Test conditions				Limits		Unit
	- Cardinotor	Test conditions		Min	Тур	Max	J
VIH	High-level input voltage			2.0		Vcc +0.3V	V
VIL	Low-level input voltage			-0.3*		0.6	V
V OH1	High-level output voltage 1	Iон= -0.5mA		2.4			V
V OH2	High-level output voltage 2	Іон= −0.05mА		Vcc -0.5V			V
V OL	Low-level output voltage	IoL=2mA				0.4	V
li	Input current	Vi=0 ~ Vcc				±1	μΑ
lo	Output current in off-state	S-S1=VIH or S-S2=VIL or S-OE=VIH VI/O=0 ~ S-VCC				±1	μА
		S-S1 ≤ 0.2V, S-S2 ≥ Vcc - 0.2V	10MHz	-	20	25	
Icc1	Active supply current (MOS level input) other inputs ≤ 0.2V or ≥S-Vcc - 0.2V	· ·	5MHz	_	10	13	mA
	(IVIOS level Iliput)	Output-open(duty 100%)	1MHz	_	3	5	
		S-S1=VIL,S-S2=VIH,	10MHz	-	22	27	
ICC2	Active supply current	other inputs=V⊩ or V∟	5MHz	_	12	15	mA
	(TTL level input)	Output-open(duty 100%)	1MHz	_	3	5	
Icc3	C4	1) S-S₂ ≤ 0.2V,other inputs=0 ~ S-Vcc	-20 ~ +85°C	_	-	40	
1003	Stand-by current	2) S-S1≥ S-Vcc - 0.2V, S-S2≥ S-Vcc - 0.2V	-20 ~ +40°C	-	_	5	μΑ
		other inputs=0 ~ S-Vcc	+25°C	-	0.3	2	
ICC4	Stand-by current	S-S1=VIH or S-S2=VIL,other inputs=0 ~ S-Vcc	;		-	0.33	mA

^{* –3.0}V in case of AC (Pulse width ≤ 30ns)

CAPACITANCE (Ta=-20 ~ 85 °C, Vcc=2.7V ~ 3.6V, unless otherwise noted)

Symbol	Parameter	T4		Limits		11.11
	Farameter	Test conditions		Тур	Max	Unit
Cı	Input capacitance	Vi=GND, Vi=25mVrms, f=1MHz			7	pF
Co	Output capacitance	Vo=GND,Vo=25mVrms, f=1MHz			9	pF

Note 1: Direction for current flowing into an IC is positive (no mark).

^{2:} Typical value is Vcc = 3V, Ta = 25°C

MITSUBISHI LSIs M6MFB/T16S2TP

2097152-BIT (256k x 8-BIT) **CMOS STATIC RAM**

AC ELECTRICAL CHARACTERISTICS (Ta=-20 ~ 85 °C, Vcc=2.7V ~ 3.6V, unless otherwise noted)

(1) MEASUREMENT CONDITIONS

Vcc2.7V ~ 3.6V Input pulse levelVIH=2.2V, VIL=0.4V

Input rise and fall time $\dots\dots$ 5ns

Reference levelVOH=VOL=1.5V Output loads Fig.1,CL = 30pF

CL = 5pF (for ten,tdis)

Transition is measured ±500mV from steady

state voltage. (for ten,tdis)

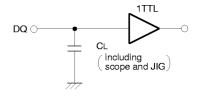
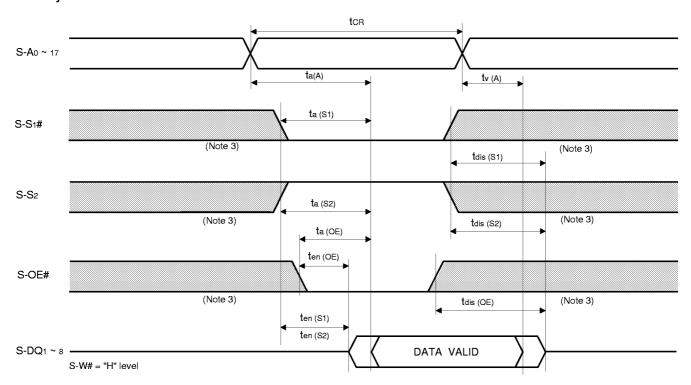


Fig.1 Output load

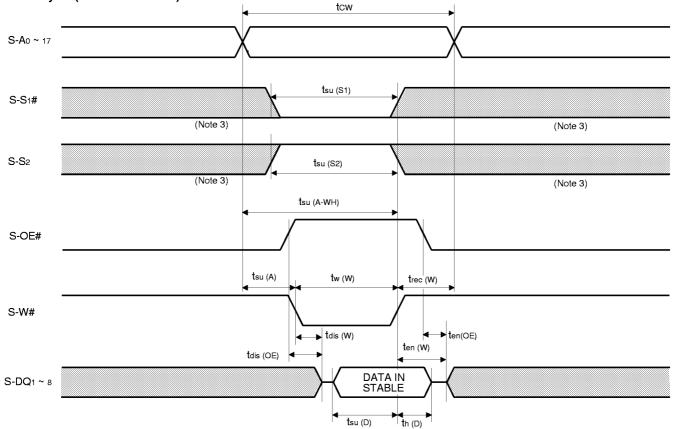
(2) READ CYCLE

		Lim	iits	Unit
Symbol	Parameter	Min	Max	J 01111
tcr	Read cycle time	110		ns
ta(A)	Address access time		110	ns
ta(S1)	Chip select 1 access time		110	ns
ta(S2)	Chip select 2 access time		110	ns
ta(OE)	Output enable access time		55	ns
tdis(S1)	Output disable time after S-S ₁ # high		40	ns
tdis(S2)	Output disable time after S-S2 low		40	ns
tdis(OE)	Output disable time after S-OE# high		40	ns
ten(S1)	Output enable time after S-S ₁ # low	10		ns
ten(S2)	Output enable time after S-S ₂ high	10		ns
ten(OE)	Output enable time after S-OE# low	5		ns
tV(A)	Data valid time after address	10		ns

(3) WRITE CYCLE


Symbol	Parameter	Lim	Limits	
Cymbol		Min	Max	Unit
tcw	Write cycle time	110		ns
tw(W)	Write pulse width	85		ns
tsu(A)	Address setup time	0		ns
tsu(A-WH)	Address setup time with respect to S-W#	100		ns
tsu(S1)	Chip select 1 setup time	100		ns
tsu(S2)	Chip select 2 setup time	100		ns
tsu(D)	Data setup time	45		ns
th(D)	Data hold time	0		ns
trec(W)	Write recovery time	0		ns
tdis(W)	Output disable time from S-W# low		40	ns
tdis(OE)	Output disable time from S-OE# high		40	ns
ten(W)	Output enable time from S-W# high	5		ns
ten(OE)	Output enable time from S-OE# low	5		ns

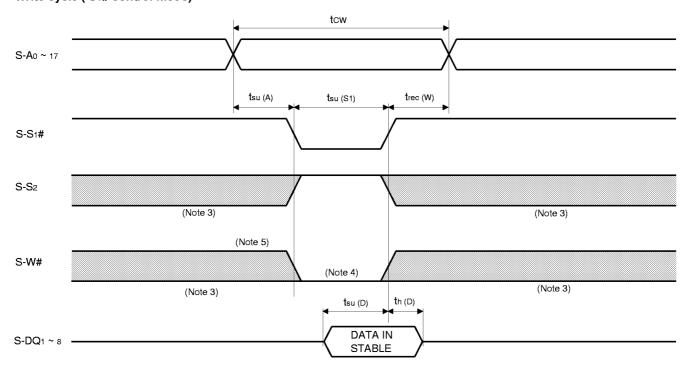
MITSUBISHI LSIS M6MFB/T16S2TP


2097152-BIT (256k x 8-BIT) CMOS STATIC RAM

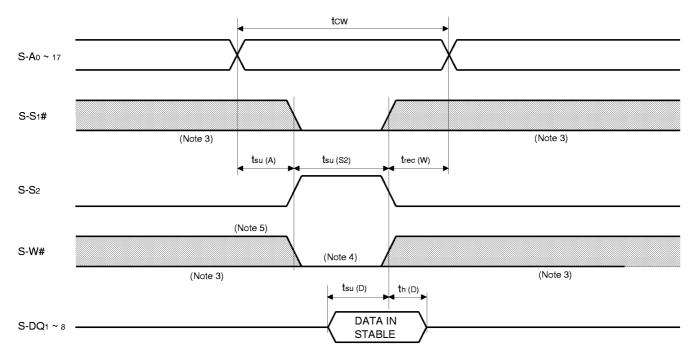
Notice: This is not a final specification. Some parametric limits are subject to change.

(4) TIMING DIAGRAMS Read cycle

Write cycle (W# control mode)



Notice: This is not a final specification. Some parametric limits are subject to change.


MITSUBISHI LSIs M6MFB/T16S2TP

2097152-BIT (256k x 8-BIT) **CMOS STATIC RAM**

Write cycle (S1# control mode)

Write cycle (S2 control mode)

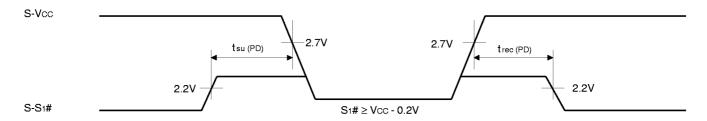
- Note 3: Hatching indicates the state is "don't care".
 4: Writing is executed while S-S2 high overlaps S-S1# and S-W# low.
 - 5: When the falling edge of S-W# is simultaneously or prior to the falling edge of S-S₁# or rising edge of S-S₂, the outputs are maintained in the high impedance state.
 - 6: Don't apply inverted phase signal externally when DQ pin is output mode.

MITSUBISHI LSIS M6MFB/T16S2TP

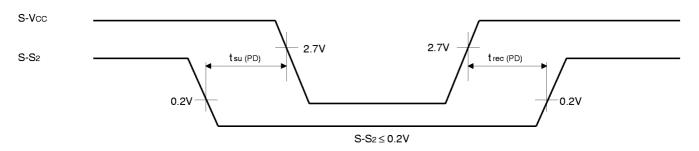
2097152-BIT (256k x 8-BIT) CMOS STATIC RAM

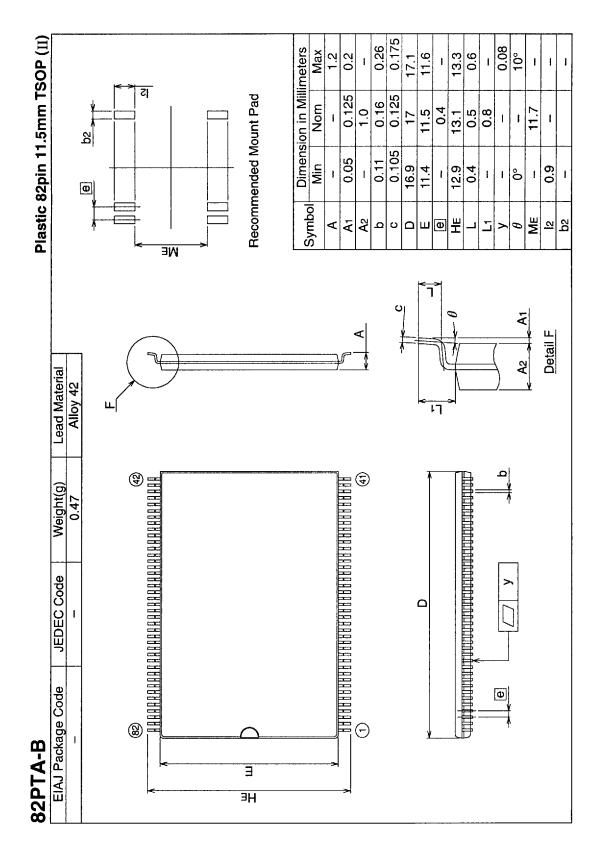
POWER DOWN CHARACTERISTICS

(1) ELECTRICAL CHARACTERISTICS (Ta = -20 ~ 85 °C, unless otherwise noted)


C h l	Parameter	Test conditions		Limits			
Symbol				Min	Тур	Max	Unit
VCC (PD)	Power down supply voltage			2			٧
VI (S1#)	Chip select input S-S1#			2.0			٧
V I (S2)	Chip select input S-S2					0.2	٧
ICC (PD)	Power down supply current	S-Vcc = 3.0V 1) S-S ₂ ≤ 0.2V,other inputs = 0 ~ S-Vcc 2) S1# ≥ S-Vcc - 0.2V,S ₂ ≥ S-Vcc - 0.2V	-20~+85°C			30	_
			-20~+40°C			3	μΑ
		other inputs = 0 ~ S-Vcc	+25°C		0.3	1	

(2) TIMING REQUIREMENTS (Ta = -20 ~ 85 °C, unless otherwise noted)


Symbol	Parameter	Test conditions	Limits			11
			Min	Тур	Max	Unit
tsu (PD)	Power down set up time		0			ns
trec (PD)	Power down recovery time		5			ms


(3) POWER DOWN CHARACTERISTICS

S1# control mode

S₂ control mode

