CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Abstract

General Description The MAX2310/MAX2312/MAX2314/MAX2316 are IF receivers designed for dual-band, dual-mode, and sin-gle-mode N-CDMA and W-CDMA cellular phone systems. The signal path consists of a variable gain amplifier (VGA) and I/Q demodulator. The devices feature guaranteed +2.7 V operation, a dynamic range of over 110dB, and high input IP3 (-33dBm at 35dB gain, 1.7 dBm at -35 dB).

Unlike similar devices, the MAX2310 family of receivers includes dual oscillators and synthesizers to form a self-contained IF subsystem. The synthesizer's reference and RF dividers are fully programmable through a 3-wire serial bus, enabling dual-band system architectures using any common reference and IF frequency. The differential baseband outputs have enough bandwidth to suit both N-CDMA and W-CDMA systems, and offer saturated output levels of $2.7 \mathrm{Vp}-\mathrm{p}$ at a low +2.75 V supply voltage. Including the low-noise voltage-controlled oscillator (VCO) and synthesizer, the MAX2310 draws only 26 mA from a +2.75 V supply in CDMA (differential IF) mode. The MAX2310/MAX2312/MAX2314/MAX2316 are available in 28-pin QSOP packages.

> Applications
> Single/Dual/Triple-Mode CDMA Handsets
> Globalstar Dual-Mode Handsets
> Wireless Data Links
> Tetra Direct-Conversion Receivers
> Wireless Local Loop (WLL)
Complete IF Subsystem Includes VCO and
Synthesizer
Supports Dual-Band, Triple-Mode Operation
VGA with >110dB Gain Control
Quadrature Demodulator
High Output Level (2.7V)
Programmable Charge-Pump Current
300MHz
3-Wire Programmable Interface
Low Supply Voltage (+2.7V)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX2310EEI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 QSOP
MAX2312EEI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 QSOP
MAX2314EEI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 QSOP
MAX2316EEl	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 QSOP

Pin Configurations appear at end of data sheet. Block Diagram appears at end of data sheet.

Selector Guide

PART	MODE	DESCRIPTION	INPUT RANGE
MAX2310	AMPS, Cellular CDMA, PCS CDMA	Dual Band, Triple Mode	40 MHz to 300 MHz
MAX2312	PCS CDMA	Single Band, Single Mode	67 MHz to 300 MHz
MAX2314	AMPS, Cellular CDMA	Single Band, Dual Mode	40 MHz to 150 MHz
MAX2316	Cellular CDMA	Single Band, Single Mode or Single Band, Dual Mode with External Discriminator	40 MHz to 150 MHz

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

ABSOLUTE MAXIMUM RATINGS

VCC to GND. SHDN to GND STBY, BUFEN, MODE, EN, DATA,
CLK, DIVSEL \qquad
 -0.3 V , the lesser of +4.2 V or $(\mathrm{VCC}+0.3 \mathrm{~V})$ AC Signals TankH \pm, TankL \pm,
$R E F, F M \pm, C D M A \pm$ \qquad .1.0V peak

Digital Input Current $\overline{\text { SHDN }}$, MODE, DIVSEL,
 Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
28-pin QSOP (derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) $\ldots . .800 \mathrm{~mW}$ Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature. $+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s). \qquad
$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VCC}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{MODE}=\mathrm{DIVSEL}=\overline{\mathrm{SHDN}}=\overline{\mathrm{STBY}}=\overline{\mathrm{BUFEN}}=$ high, differential output load $=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set to default power-up settings. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+2.75 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Current (Note 1)	ICC	CDMA mode	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		25.9	37.5	mA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			41.5	
		FM IQ mode	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		25.4	36.7	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			40.6	
		FM I mode	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		24.7	35.7	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			39.5	
		STANDBY (VCO_H)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		12.3	18.8	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			20.7	
		STANDBY (VCO_L)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		11.5	18.4	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			20.3	
		Addition for LO out ($\overline{\mathrm{BUFEN}}=$ low)		3.5			
Shutdown Current	ICC	$\overline{\text { SHDN }}=$ low			1.5	10	$\mu \mathrm{A}$
Register Shutdown Current	ICC				3	5.8	mA
Logic High				2.0			V
Logic Low						0.5	V
Logic High Input Current	$\mathrm{IIH}^{\text {H }}$			2			$\mu \mathrm{A}$
Logic Low Input Current	IIL					2	$\mu \mathrm{A}$
VGC Control Input Current		$0.5 \mathrm{~V}<\mathrm{VVGC}<2.3 \mathrm{~V}$		-5		5	$\mu \mathrm{A}$
VGC Control Input Current During Shutdown		$\overline{\text { SHDN }}=$ low				1	$\mu \mathrm{A}$
Lock Indicator High (locked)		$50 \mathrm{k} \Omega$ load		2.0			V
Lock Indicator Low (unlocked)		$50 \mathrm{k} \Omega$ load				0.5	V
DC Offset Voltage		I+ to I- and Q+ to Q-, PLL locked		-20	± 1.5	+20	mV
Common-Mode Output Voltage		$\mathrm{V}_{\mathrm{CC}}=2.75 \mathrm{~V}$		VCC - 1.4			V

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

AC ELECTRICAL CHARACTERISTICS

(MAX2310/MAX2314 or MAX2312/MAX2316 EV kit, $\mathrm{V}_{\mathrm{CC}}=+2.75 \mathrm{~V}$, registers set to default power-up states, $\mathrm{f}_{\mathrm{I}} \mathrm{N}=210.88 \mathrm{MHz}$ for CDMA, $f / \mathrm{N}=85.88 \mathrm{MHz}$ for $\mathrm{FM}, \mathrm{fREF}=19.68 \mathrm{MHz}$, synthesizer locked with passive 2 nd-order lead-lag loop filter, $\overline{\mathrm{SHDN}}=$ high, VGC set for +35 dB voltage gain, differential output load $=10 \mathrm{k} \Omega$, all power levels referred to $50 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Frequency	fin	(Note 2)	40		300	MHz
Reference Frequency	freF	(Note 2)			39	MHz
Frequency Reference Signal Level	VREF		0.2			Vp-p

SIGNAL PATH, CDMA MODE

Input Third-Order Intercept	IIP3	Gain $=-35 \mathrm{~dB}$ (Note 3)			1.7		dBm
		Gain $=+35 \mathrm{~dB}$ (Note 4)			-33.2		
Input 1dB Compression	$\mathrm{P}_{1 \mathrm{~dB}}$	Gain = -		-9	-6.4		dBm
		Gain $=+35 \mathrm{~dB}$		-44	-38.3		
Input 0.25dB Desensitization		(Note 5)	Gain $=-35 \mathrm{~dB}$		-14.8		dBm
			Gain $=+35 \mathrm{~dB}$		-49		
Minimum Voltage Gain	Av	$\mathrm{VGC}=0.5 \mathrm{~V}$ (Note 6)			-54.8	-49	dB
Maximum Voltage Gain	Av	$\mathrm{V}_{\mathrm{GC}}=2.3 \mathrm{~V}$ (Note 6)		56	61.3		dB
DSB Noise Figure	NF	Gain $=-35 \mathrm{~dB}$			62.9		dB
		Gain $=+35 \mathrm{~dB}$			6.36		

SIGNAL PATH, FM_IQ MODE

Input Third-Order Intercept	IIP3	(Note 7)	Gain $=-35 \mathrm{~dB}$	-6.0			dBm
			Gain $=+35 \mathrm{~dB}$		-31		
Input 1dB Compression	P1dB	(Notes 6, 8)	Gain $=-35 \mathrm{~dB}$	-20	-16.2		dBm
			Gain $=+35 \mathrm{~dB}$	-44	-38.4		
Minimum Voltage Gain	Av	VGC $=0.5 \mathrm{~V}$ (Note 6)			-50.2	-47.4	dB
Maximum Voltage Gain	Av	$\mathrm{V}_{\mathrm{GC}}=2.3 \mathrm{~V}$ (Note 6)		58.5	63.4		dB

SIGNAL PATH, CDMA and FM_IQ MODE

Maximum Gain Variation Over Temperature		Normalized to $+25^{\circ} \mathrm{C}$		± 2.5	dB
Baseband 0.5dB Bandwidth				4.2	MHz
Quadrature Suppression		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (Note 6)	+28	+35	dB
LO to Baseband Leakage				1	mVp-p
Saturated Output Level	VSAT	Differential		2.7	Vp-p
PHASE-LOCKED LOOP					
VCO Tune Range	fvCO_L	(Note 2)	80		MHz
	fvCO_H		135		
LOOUT Output Power	PLO	RL $=50 \Omega, \overline{\mathrm{BUFEN}}=$ low		-13.7	dBm

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2310/MAX2314 or MAX2312/MAX2316 EV kit, VCC $=+2.75 \mathrm{~V}$, registers set to default power-up states, $\mathrm{f} / \mathrm{N}=210.88 \mathrm{MHz}$ for CDMA, $\mathrm{f} \mathrm{IN}=85.88 \mathrm{MHz}$ for FM , $\mathrm{fREF}=19.68 \mathrm{MHz}$, synthesizer locked with passive 2 nd-order lead-lag loop filter, $\overline{\mathrm{SHDN}}=$ high, VGC set for +35 dB voltage gain, differential output load $=10 \mathrm{k} \Omega$, all power levels referred to $50 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
VCO Minimum Divide Ratio	M1, M2				256	
VCO Maximum Divide Ratio	M1, M2		16383			
REF Minimum Divide Ratio	R1, R2				2	
REF Maximum Divide Ratio	R1, R2		2047			
Minimum Phase Detector Comparison Frequency		(Note 6)			20	kHz
Maximum Phase Detector Comparison Frequency		(Note 6)	1500			kHz
Base Band Spurious due to PLL					-50	dBc
LOOUT at 85 MHz , VCO_L Enabled (Note 9)		1 kHz offset		-72		$\mathrm{dBc} / \mathrm{Hz}$
		12.5 kHz offset		-100		
		30kHz offset		-110		
		120kHz offset		-119		
		900kHz offset		-125		
LOOUT at 210 MHz , VCO_H Enabled (Note 9)		1 kHz offset		-64		$\mathrm{dBc} / \mathrm{Hz}$
		12.5 kHz offset		-91		
		30 kHz offset		-105		
		120kHz offset		-115		
		900 kHz offset		-125		
Charge-Pump Source/Sink Current		Acquisition, CPX = XX, TC = 1 (Note 10)	1480	2100	2650	$\mu \mathrm{A}$
		Locked, CPX = 00	105	150	190	
		Locked, CPX = 01	150	210	265	
		Locked, CPX = 10	210	300	380	
		Locked, CPX = 11	300	425	530	
Charge-Pump Source/Sink Matching		Locked, all values of CPX, $0.5 \mathrm{~V}<\mathrm{V}_{C P}<\mathrm{V}_{C C}-0.5 \mathrm{~V}$		0.2	10	\%

Note 1: FM_IQ and FM_I modes are not available on MAX2312 and MAX2316.
Note 2: Recommended operating frequency range.
Note 3: $f_{1}=210.88 \mathrm{MHz}, f_{2}=210.89 \mathrm{MHz}, \mathrm{P}_{\mathrm{f} 1}=\mathrm{P}_{\mathrm{f} 2}=-15 \mathrm{dBm}$.
Note 4: $f_{1}=210.88 \mathrm{MHz}, f_{2}=210.89 \mathrm{MHz}, \mathrm{P}_{\mathrm{f} 1}=\mathrm{P} \mathrm{f} 2=-50 \mathrm{dBm}$.
Note 5: Small-signal gain at 200kHz below the LO frequency will be reduced by less than 0.25 dB when an interfering signal at 1.25 MHz below the LO frequency is applied at the specified level.

Note 6: Guaranteed by design and characterization.
Note 7: $\mathrm{f}_{1}=85.88 \mathrm{MHz}, \mathrm{f}_{2}=85.98 \mathrm{MHz}, \mathrm{P}_{\mathrm{f} 1}=\mathrm{P} \mathrm{f} 2=-15 \mathrm{dBm}$.
Note 8: $f_{1}=85.88 \mathrm{MHz}, \mathrm{f}_{2}=85.98 \mathrm{MHz}, \mathrm{P} 1 \mathrm{f}=\mathrm{P} 2=-50 \mathrm{dBm}$.
Note 9: Measured at LOOUT with BD $=0(\div 2$ selected $)$.
Note 10: Not available on MAX2316.

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Typical Operating Characteristics

(MAX2310/MAX2314 or MAX2312/MAX2316 EV kit, $\mathrm{V}_{\mathrm{CC}}=+2.75 \mathrm{~V}$, registers set to default power-up states, $\mathrm{f} / \mathrm{N}=210.88 \mathrm{MHz}$ for CDMA, $\mathrm{f} / \mathrm{N}=85.88 \mathrm{MHz}$ for FM , $\mathrm{fREF}=19.68 \mathrm{MHz}$, synthesizer locked with passive 2 nd-order lead-lag loop filter, $\overline{\mathrm{SHDN}}=$ high, VGC set for +35 dB voltage gain, differential output load $=10 \mathrm{k} \Omega$, all power levels referred to $50 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

GAIN vs. INPUT FREQUENCY

NOISE FIGURE vs. GAIN

RECEIVE SHUTDOWN CURRENT vs.
SUPPLY VOLTAGE

GAIN vs. BASEBAND FREQUENCY

NOISE FIGURE vs. TEMPERATURE

GAIN vs. VGC

THIRD-ORDER INPUT INTERCEPT vs. GAIN

VCO VOLTAGE vs. TIME

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

(MAX2310/MAX2314 or MAX2312/MAX2316 EV kit, $\mathrm{V}_{C C}=+2.75 \mathrm{~V}$, registers set to default power-up states, $\mathrm{f}_{\mathrm{IN}}=210.88 \mathrm{MHz}$ for CDMA, $\mathrm{fIN}=85.88 \mathrm{MHz}$ for FM , $\mathrm{fREF}=19.68 \mathrm{MHz}$, synthesizer locked with passive 2 nd-order lead-lag loop filter, $\overline{\mathrm{SHDN}}=$ high, VGC set for +35 dB voltage gain, differential output load $=10 \mathrm{k} \Omega$, all power levels referred to $50 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

TANKL PORT
1/S11 vs. FREQUENCY

TANKH PORT
1/S11 vs. FREQUENCY

LOOUT PORT
S22 vs. FREQUENCY

Pin Description

PIN				NAME	FUNCTION
MAX2310	MAX2312	MAX2314	MAX2316		
1	1	1, 8	1	BYP	Bypass Node. Must be capacitively decoupled (bypassed) to analog ground.
2	2	2	2	CP_OUT	Charge-Pump Output
3	3	3	3	GND	Analog Ground Reference
4,5	-	4, 5	5,6	TANKL+, TANKL-	Differential Tank Input for Low-Frequency Oscillator
-	4	-	4	DIVSEL	High selects M1/R1; low selects M2/R2.

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Pin Description (continued)

PIN				NAME	FUNCTION
MAX2310	MAX2312	MAX2314	MAX2316		
6, 7	5,6	-	-	TANKH+, TANKH-	Differential Tank Input for High-Frequency Oscillator
-	7	-	7	BUFEN	LO Buffer Amplifier-active low
-	-	6, 7	-	N.C.	No Connection. Must be left open-circuit.
8	-	-	-	MODE	Mode Select. High selects CDMA mode; low selects FM mode.
-	8	-	8	LOOUT	Internal VCO Output. Depending on setting of BD bit, LOOUT is either the VCO frequency (twice the IF frequency) or onehalf the VCO frequency (equal to the IF frequency).
9	9	9	9	V_{CC}	+2.7V to +5.5V Supply for Digital Circuits
10	10	10	10	GND	Digital Ground
11	11	11	11	REF	Reference Frequency Input
12	12	12	12	$\overline{\text { SHDN }}$	Shutdown Input-active low. Low powers down entire device, including registers and serial interface.
13, 14	13, 14	13, 14	13, 14	IOUT+, IOUT-	Differential In-Phase Baseband Output, or FM signal output FM_I mode is selected.
15	15	15	15	LOCK	Lock Output-open-collector pin. Logic high indicates phaselocked condition.
16, 17	16, 17	16, 17	16, 17	$\begin{aligned} & \text { QOUT-, } \\ & \text { QOUT+ } \end{aligned}$	Differential Quadrature-Phase Baseband Output. Disabled if FM_I mode is selected.
18	18	18	18	CLK	Clock input of the 3-wire serial bus
19	19	19	19	$\overline{\mathrm{EN}}$	Enable Input. When low, input shift register is enabled.
20	20	20	20	DATA	Data input of the 3-wire serial bus.
21	21	21	21	V_{CC}	2.7V to 5.5V Supply for Analog Circuits
22	22	22	22	VGC	VGA Gain Control Input. Control voltage range is 0.5 V to 2.3 V .
23, 24	23, 24	23, 24	23, 24	CDMA-, CDMA+	Differential CDMA Input. Active in CDMA mode.
25	-	25	-	FM+	Differential Positive Input. Active in FM mode.
-	25	-	25	N.C.	No Connection.
26	-	26	-	FM-	Differential Negative Input for FM signal. Bypass to GND for single-ended operation.
-	26	-	26	$\overline{\text { STBY }}$	Standby Input-active low. Low powers down VGA and demodulator while keeping VCO, PLL, and serial bus on.
27, 28	27, 28	27, 28	27, 28	BYP	Bypass Node. Must be capacitively decoupled (bypassed) to analog V_{CC}.

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Figure 1. MAX2310 Typical Operating Circuit

Detailed Description

MAX2310

The MAX2310 is intended for dual-band (PCS and cellular) and dual-mode code division multiple access (CDMA) and FM applications (Figure 1). The device includes an IF variable-gain amplifier, quadrature demodulator, dual VCOs, and dual-frequency synthesizers (Figure 7). Dual VCOs are provided for applications using different IF frequencies for each mode or band of operation. The analog FM output signal can be
configured for conversion to the I channel, or it may be converted in quadrature to both the I and Q channels. The MAX2310's operation modes are described in Table 1. These modes are set by programming the control register and setting logic levels on control pins. If MODE is left floating, the internal register controls the operation. If driven high or low, mode will override certain register bits, as shown in Table 1.

CDMA IF VGAs and I／Q Demodulators with VCO and Synthesizer

Table 1．MAX2310 Control Register States

Note：$H=$ high，$L=$ low，$F=$ floating pin，$X=$ don＇t care，Blank $=$ independent parameter， $1=$ logic high， $0=$ logic low．

Abstract

MAX2312／MAX2316 The MAX2312／MAX2316 quadrature demodulators are simplified versions of the MAX2310 that can be used in single－mode CDMA or dual mode using an external FM discriminator（Figures 2a and 2b）．The MAX2312 VCO is optimized for the 67 MHz to 300 MHz IF frequency range，while the MAX2316 VCO is optimized for the 40 MHz to 150 MHz IF frequency range． Both devices include a buffered output for the VCO． The buffered VCO output can be used to support sys－ tems implementing traditional limiting IF stages for FM demodulation in dual－mode phones as well as for the transmit LO in TDD systems．This buffered output can

be configured for the VCO frequency（twice the IF fre－ quency）or one－half the VCO frequency（IF frequency）． The BUFEN pin enables this feature．A standby mode， in which only the VCO and synthesizer are operational， can be selected through the serial interface or the STBY pin．The MAX2312／MAX2316s＇operational modes are described in Table 2．These modes are set by pro－ gramming the control register and／or setting logic lev－ els on control pins．If the control pins（ $\overline{\text { STBY，}}$ BUFEN， DIVSEL）are left floating，the internal register controls the operational mode．If driven high or low，the control pins will override certain register bits，as shown in Table 2.

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Figure 2a. MAX2312 Typical Operating Circuit

CDMA IF VGAs and I／Q Demodulators with VCO and Synthesizer

Figure 2b．MAX2316 Typical Operating Circuit
9 －عてXVW／t トعてXVW／乙 トعてXVW／O トعてXVW

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Table 2. MAX2312/MAX2316 Control Register States

Note: H = high, L = low, 1 = logic high, $0=$ logic low, $X=$ don't care, blank = independent parameter.

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Figure 3. MAX2314 Typical Operating Circuit

MAX2314
The MAX2314 supports CDMA cellular-band, dualmode operation. As with the MAX2310, the FM mode can be configured for conversion to the I port or quadrature conversion to both the I and Q ports (Figure 3). The MAX2314's operational modes are described in Table 3. These modes are set by programming the control register and setting logic levels on control pins.

Applications Information

Variable-Gain Amplifier and Demodulator
The MAX2310 family provides a Variable-Gain Amplifier (VGA) with exceptional gain range. The MAX2310/ MAX2314 support multimode applications with dual differential inputs, selectable with the IN_SEL (IS) control bit. On the MAX2310 this function can be controlled with the MODE pin, which overrides the IS control bit. The VGA's gain is controlled over a 110dB range with

CDMA IF VGAs and I／Q Demodulators with VCO and Synthesizer

Table 3．MAX2314 Control Register States

		P I N	$\begin{aligned} & \mathbf{M} \\ & \mathbf{S} \\ & \mathbf{B} \end{aligned}$	CONTROL REGISTER L S											
OPERATIONAL MODE	ACTION RESULT	\|⿳亠口冋阝		$\begin{aligned} & 1 \\ & \text { 1} \\ & \text { a } \end{aligned}$	$\begin{aligned} & \underset{\sim}{Z} \\ & \underset{\sim}{w} \\ & \underset{\sim}{n} \end{aligned}$		$\begin{aligned} & \text { 岗 } \\ & \stackrel{1}{0} \end{aligned}$	$\begin{aligned} & \text { Q } \\ & \text { 0 } \\ & 0 \\ & 0 \\ & > \end{aligned}$	$\begin{aligned} & \text { u} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { خ } \\ & \frac{1}{\mathbf{n}} \end{aligned}$	$\left\lvert\, \begin{array}{\|l\|l\|l\|l\|} \underset{\sim}{\underset{\sim}{u}} \\ \hline \end{array}\right.$		$\begin{aligned} & \underset{\sim}{山} \\ & \mathbf{\omega}_{1} \end{aligned}$	$\left\lvert\,\right.$	文
SHUTDOWN	Shutdown pin completely shuts down chip	L	X	X	X	X	X	X	X	X	X	X	X	X	X
SHUTDOWN	0 in shutdown register bit leaves seri－ al port active	H	X	X	X	X	X	X	X	X	X	X	X	X	L
STANDBY	0 in standby pin turns off VGA and modulator only	H			0				0	X	X			0	1
CDMA	CDMA operation	H			0				0	X	X	X	1	1	1
FM＿IQ	FM IQ quadrature operation	H			0				0	X	X	0	0	1	1
FM＿I	FM I operation	H			0				0	X	X	1	0	1	1

Note：$H=$ high，$L=$ low， 1 ＝logic high， $0=$ logic low，$X=$ don＇t care，blank＝independent parameter
the VGC pin．The output of the VGA drives the RF ports of a quadrature demodulator．The MAX2310／MAX2314 provide two types of FM demodulation，controlled by the FM＿TYPE（FT）control bit．When FM＿TYPE is＂1，＂ the signal is passed through both the I and Q signal paths for subsequent lowpass filtering and A／D conver－ sion at baseband．If FM＿TYPE is＂ 0, ，＂the FM signal is passed through the I mixer only．

Voltage－Controlled Oscillator， Buffers，and Quadrature Generation

 The LO signal for downconversion is provided by a voltage－controlled oscillator（VCO）consisting of an on－ chip differential oscillator，and an off－chip high－Q reso－ nant network．Figure 4 shows a simplified schematic of the VCO oscillator．Multiband operation is supported by the MAX2310 with dual VCOs．VCO＿H and VCO＿L are selectable with the MODE pin or the VCO＿SEL（VS）control bit．They oscillate at twice the desired LO fre－ quency．For applications requiring an external LO，the VCOs can be bypassed with the VCO＿BYP（VB）control bit．
The MAX2312／MAX2316 buffer the output of the VCO and provide this signal at the LOOUT pin．This signal is enabled by the BUFEN（BE）control bit or by the BUFEN control pin．The frequency of this signal is selected by the BUF＿DIV（BD）control bit，and can be either the VCO frequency or half the VCO frequency．
Quadrature downconversion is realized by providing in－ phase（I）and quadrature－phase（Q）components of the LO signal to the LO ports of the demodulator described above．The quadrature LO signals are generated by dividing the VCO output frequency using two latches． The appropriate latch outputs provide I and Q signals at the desired LO frequency．

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Abstract

Synthesizer The VCO's output frequency is controlled by an internal phase-locked-loop (PLL) dual-modulus synthesizer. The loop filter is off-chip to simplify loop design for emerging applications. The tunable resonant network is also off-chip for maximum Q and for system design flexibility. The VCO output frequency is divided down to the desired comparison frequency with the M counter. The M counter consists of a 4-bit A swallow counter and a 10-bit P counter. A reference signal is provided from an external source and is divided down to the comparison frequency with the R counter. The two divided signals are compared with a three-state digital phase-frequency detector. The phase-detector output drives a charge pump as well as lock-detect logic and turbocharge control logic. The charge pump output (CP_OUT) pin is processed by the loop filter and drives the tunable resonant network, altering the VCO frequency and closing the loop. Multimode applications are supported by two independent programmable registers each for the M counter (M1, M2), the R counter (R1, R2), and the charge-pump output current magnitude (CP1, CP2). The DIVSEL (DS) bit selects which set of registers is used. It can be overridden by the MAX2310's MODE pin or the MAX2312/ MAX2316's DIVSEL pin. Programming these registers is discussed in the 3-Wire Interface and Registers section.

Figure 4. Voltage-Controlled Oscillators

When the part initially powers up or changes state, the synthesizer acquisition time can be reduced by using the Turbo feature, enabled by the TURBOCHARGE (TC) control bit. Turbo functionality provides a larger charge-pump current during acquisition mode. Once the VCO frequency is acquired, the charge-pump output current magnitude automatically returns to the preprogrammed state to maintain loop stability and minimize spurs in the VCO output signal.
The lock detect output indicates when the PLL is locked with a logic high.

3-Wire Interface and Registers

The MAX2310 family incorporates a 3-wire interface for synthesizer programming and device configuration (Figure 5). The 3-wire interface consists of a clock, data, and ENABLE. It controls the VCO dividers (M1 and M 2), reference frequency dividers (R1 and R2), and a 13-bit control register. The control register is used to set up the operational modes (Table 4). The input shift is 17 data bits long and requires a total of 18 clock bits (Figure 6). A single clock pulse is required before enable drops low to initialize the data bus.
Whenever the M or R divide register value is programmed and downloaded, the control register must also be subsequently updated. This prevents turbolock from going active when not desired.
The $\overline{\text { SHDN }}$ control bit is notable because it differs from the $\overline{\text { SHDN }}$ pin. When the SHDN control bit is low, the registers and serial interface are left active, retaining the values stored in the latches, while the rest of the device is shut off. In contrast, the $\overline{\text { SHDN }}$ pin, when low, shuts down everything, including the registers and serial interface. See the functional diagram in Figure 7.

Registers
Figure 8 shows the programming logic. The 17-bit shift register is programmed by clocking in data at the rising edge of CLK. Before the shift register is able to accept data, it must be initialized by driving it with at least one full clock cycle at the CLK input with $\overline{\mathrm{EN}}$ high (see Figure 6). Pulling enable low will allow data to be clocked into the shift register; pulling enable high loads the register addressed by A0, A1, and A2, respectively (Figure 8). Table 5 lists the power-on default values of all registers. Table 6 lists the charge-pump current, depending on CPO and CP1.

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

MAX2310/MAX2312/MAX2314/MAX2316

Figure 5. 3-Wire Control Block Diagram

Figure 6. 3-Wire Interface Timing Diagram

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Figure 7. Functional Diagram

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Table 4. Control Register, Default State: 0B57h, Address: 110b

BIT ID	BIT NAME	POWERUP STATE	$\begin{gathered} \text { BIT } \\ \text { LOCATION } \\ 0=\text { LSB } \end{gathered}$	FUNCTION
TM	TEST_MODE	0	12	Must be 0 for normal operation.
POL	CP_POL	1	11	Logic "1" causes the charge-pump output CP_OUT to source current when fref/R > fvco/M. This state is used when the VCO tune polarity is such that increasing voltage produces increasing frequency. Logic "0" causes CP_OUT to source current when fvco/M $>f_{\text {REF }} / R$. This state is used when increasing tune voltage causes the VCO frequency to decrease.
TE	TEST_ENABLE	0	10	Must be 0 for normal operation.
TC	TURBO_CHARGE	1	9	Logic "1" activates turbocharge mode, which provides rapid frequency acquisition in the PLL. Not available on MAX2316.
DS	DIV_SEL	1	8	Logic "1" selects M1/R1 divide ratios. Logic "0" selects M2/R2.
VB	VCO_BYP	0	7	Logic "1" bypasses the VCO inputs for external VCO operation.
VS	VCO_SEL	1	6	Logic "1" selects VCO_H. Logic "0" selects VCO_L.
BD	BUF_DIV	0	5	Logic "1" selects divide-by-2 on LOOUT port. Logic "0" bypasses divider.
BE	BUFEN	1	4	Logic "1" disables LOOUT. Logic "0" enables LOOUT.
FT	FM_TYPE	0	3	Active in FM mode. Logic " 0 " selects quadrature demodulator for FM mode. Logic "1" selects downconversion to I port.
IS	IN_SEL	1	2	Logic "0" selects FM input port. Logic "1" selects CDMA input.
SB	$\overline{\text { STBY }}$	1	1	Logic "0" enables standby mode, which shuts down the VGA and demodulator stages, leaving the VCO locked and the registers active.
SD	$\overline{\text { SHDN }}$	1	0	Logic "0" enables register-based shutdown. This mode shuts down everything except the M and R latches and the serial bus.

Table 5. Register Defaults

REGISTER	DEFAULT
M1	10519DEC
M2	4269DEC
R1	492DEC
R2	492DEC
CTRL	OB57HEX
CP0	11 BIN
CP1	11 BIN

Table 6. Charge-Pump Control Bits

$\mathbf{C P 1}$	CPO	CHARGE-PUMP CURRENT AFTER ACQUISITION $(\boldsymbol{\mu} \mathbf{A})$
0	0	150
0	1	210
1	0	300
1	1	425

CDMA IF VGAs and I／Q Demodulators with VCO and Synthesizer

Figure 8．Programming Logic

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

MAX2310/MAX2312/MAX2314/MAX2316

TOP VIEW

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Chip Information

TRANSISTOR COUNT: 6422

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Revision History

Pages changed at Rev 2: 1, 4, 18, 22

