

Pin Descriptions

Pin Names	Description
$\overline{\mathrm{OE}}$	Output Enable Inputs
$\mathrm{T} / \overline{\mathrm{R}}$	Transmit/Receive Input
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Side A Inputs or
	3-STATE Outputs $\mathrm{B}_{0}-\mathrm{B}_{7}$ Side B Inputs or
3-STATE Outputs	

Truth Table

Inputs		Outputs
$\overline{\mathrm{OE}}$	$\mathbf{T} / \overline{\mathbf{R}}$	
L	L	Bus B Data to Bus A
L	H	Bus A Data to Bus B
H	X	HIGH-Z State

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

AC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay	2.7	2.0	9.0	14.0	2.0	15.0	ns
$\mathrm{t}_{\mathrm{PLH}}$		3.3 ± 0.3	2.0	7.5	10.0	2.0	10.5	
$\mathrm{t}_{\text {PZL }}$	Output Enable Time	2.7	3.0	10.2	18.3	3.0	19.0	ns
$\mathrm{t}_{\text {PZH }}$		3.3 ± 0.3	3.0	8.5	13.0	3.0	13.5	
$t_{\text {PHZ }}$	Output Disable Time	2.7	1.0	10.2	20.4	1.0	21.0	ns
$\mathrm{t}_{\text {PLZ }}$		3.3 ± 0.3	1.0	8.5	14.5	1.0	15.0	
$\mathrm{t}_{\text {OSHL }}$	Output to Output	2.7		1.0	1.5		1.5	ns
	Skew (Note 9)	3.3 ± 0.3		1.0	1.5		1.5	

Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW to HIGH (tosLh). Parameterguaranteed by design.

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Open}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	15	pF	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
C_{PD} (Note 10)	Power Dissipation Capacitance	67	pF	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

Note 10: $\mathrm{C}_{\text {PD }}$ is measured at 10 MHz .

Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead (0.300 " Wide) Small Outline Package, SOIC JEDEC
Package Number M20B

20-Lead Molded Shrink Small Outline Package, SOIC EIAJ
Package Number M20D

