FAIRCHILD

SEMICONDUCTOR

74ABT241 **Octal Buffer/Line Driver with 3-STATE Outputs**

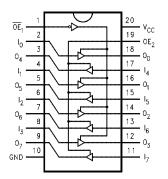
General Description

The ABT241 is an octal buffer and line driver with 3-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus-oriented transmitter/ receiver.

Revised November 1999

January 1995

Features


- Non-inverting buffers
- Output sink capability of 64 mA, source capability of 32 mA
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Nondestructive hot insertion capability

Ordering Code:

Package Number	Package Description
M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body
M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
	M20B M20D MSA20

Device also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Pin Descriptions

Pin Names	Description
OE ₁	Output Enable Input (Active LOW)
OE ₂	Output Enable Input (Active HIGH)
I ₀ —I ₇	Inputs
O ₀ -O ₇	Outputs

Truth Table

OE ₁	I ₀₋₃	0 ₀₋₃	OE ₂	I ₄₋₇	0 ₄₋₇
Н	х	Z	L	Х	Z
L	н	н	н	н	н
L	L	L	н	L	L

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial Z = High Impedance

Absolute Maximum Ratings(Note 1)

Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature under Bias	$-55^{\circ}C$ to $+125^{\circ}C$
Junction Temperature under Bias	$-55^{\circ}C$ to $+150^{\circ}C$
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disabled or	
Power-Off State	-0.5V to 5.5V
in the HIGH State	-0.5V to V _{CC}
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
DC Latchup Source Current	
(Over Comm Operating Range)	–500 mA
Over Voltage Latchup (I/O)	10V

Recommended Operating Conditions

Free Air Ambient Temperature	$-40^{\circ}C$ to $+85^{\circ}C$
Supply Voltage	+4.5V to +5.5V
Minimum Input Edge Rate ($\Delta V/\Delta t$)	
Data Input	50 mV/ns
Enable Input	20 mV/ns

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parame	eter	Min	Тур	Max	Units	V _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Vol	tage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage		2.5			V	Min	I _{OH} = -3 mA
			2.0			V	Min	I _{OH} = -32 mA
V _{OL}	Output LOW Voltage				0.55	V	Min	I _{OL} = 64 mA
IIH	Input HIGH Current				1 1	μΑ	Max	V _{IN} = 2.7V (Note 4) V _{IN} = V _{CC}
I _{BVI}	Input HIGH Current Bre	eakdown Test			7	μA	Max	$V_{IN} = 7.0V$
	Input LOW Current				-1	μι	max	V _{IN} = 0.5V (Note 4)
١L					-1	μΑ	Max	$V_{IN} = 0.0V$ (Note 4)
V _{ID}	Input Leakage Test		4.75			V	0.0	$I_{ID} = 1.9 \ \mu A$ All Other Pins Grounded
I _{OZH}	Output Leakage Curren	nt			10	μA	0-5.5V	$V_{OUT} = 2.7V; \overline{OE}_n = 2.0V$
I _{OZL}	Output Leakage Curren	nt			-10	μΑ	0-5.5V	$V_{OUT} = 0.5V; \overline{OE}_n = 2.0V$
I _{OS}	Output Short-Circuit Cu	urrent	-100		-275	mA	Max	$V_{OUT} = 0.0V$
I _{CEX}	Output High Leakage 0	Current			50	μΑ	Max	V _{OUT} = V _{CC}
I _{ZZ}	Bus Drainage Test				100	μΑ	0.0	V _{OUT} = 5.5V; All Others GND
I _{CCH}	Power Supply Current				50	μΑ	Max	All Outputs HIGH
I _{CCL}	Power Supply Current				30	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current				50	μΑ	Max	$\overline{OE}_n = V_{CC};$
								All Others at V_{CC} or Ground
I _{CCT}	Additional I _{CC} /Input	Outputs Enabled			2.5	mA		$V_I = V_{CC} - 2.1V$
		Outputs 3-STATE			2.5	mA	Max	Enable Input $V_I = V_{CC} - 2.1V$
		Outputs 3-STATE			50	μΑ		Data Input $V_I = V_{CC} - 2.1V$
								All Others at V_{CC} or Ground
I _{CCD}	Dynamic I _{CC}	No Load				mA/	Max	Outputs Open
	(Note 4)				0.1	MHz	wax	OE _n = GND, (Note 3)
								One Bit Toggling, 50%
								Duty Cycle

Note 3: For 8 bits toggling, $I_{CCD} < 0.8 \mbox{ mA/MHz}.$

Note 4: Guaranteed, but not tested.

DC Electrical Characteristics

(SOIC pac	Parameter	Min	Тур	Max	Units	v _{cc}	Conditions $C_L = 50 \text{ pF},$ $R_L = 500\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}		0.5	0.8	V	5.0	T _A = 25°C (Note 5)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-1.3	-0.8		V	5.0	$T_A = 25^{\circ}C$ (Note 5)
V _{OHV}	Minimum HIGH Level Dynamic Output Voltage	2.7	3.1		V	5.0	$T_A = 25^{\circ}C$ (Note 7)
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	2.0	1.5		V	5.0	$T_A = 25^{\circ}C$ (Note 6)
V _{ILD}	Maximum LOW Level Dynamic Input Voltage		1.1	0.8	V	5.0	T _A = 25°C (Note 6)

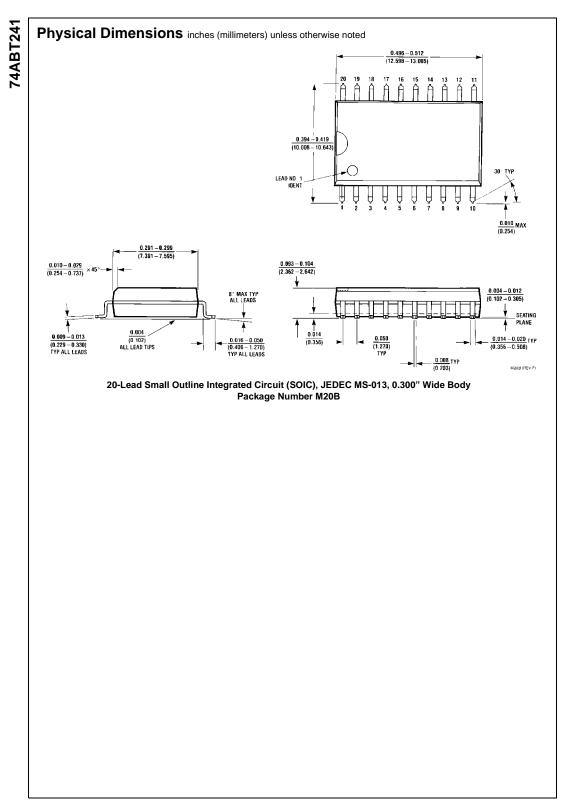
74ABT241

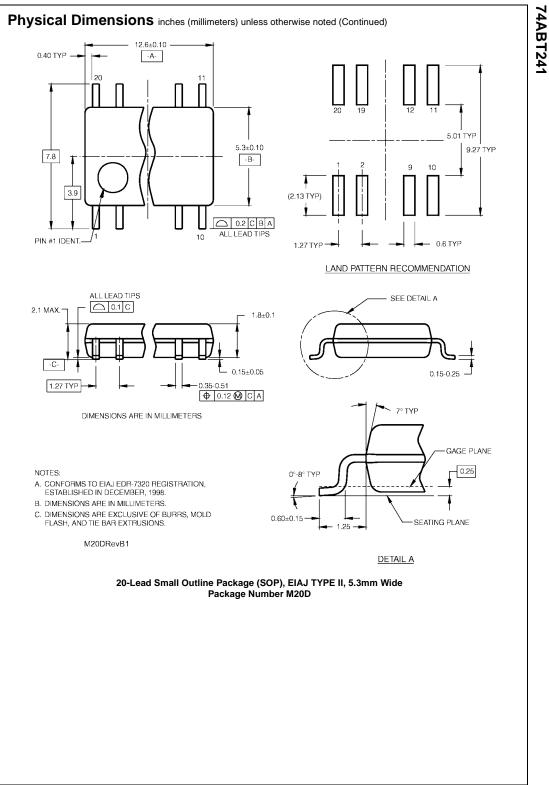
	Note 5: Max number of outputs defined as (n). n – 1 data inputs are driven 0V to 3V. One output at LOW. Guaranteed, but not tested.
	Note 6: Max number of data inputs (n) switching. n – 1 inputs switching 0V to 3V. Input-under-test switching: 3V to threshold (V _{ILD}), 0V to threshold (V _{IHD}).
I	Guaranteed, but not tested.

Note 7: Max number of outputs defined as (n). n – 1 data inputs are driven 0V to 3V. One output HIGH. Guaranteed, but not tested.

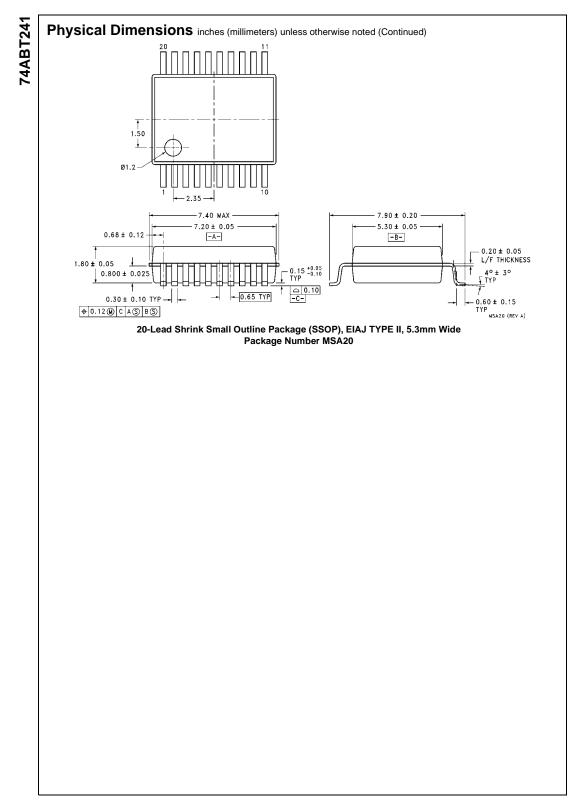
AC Electrical Characteristics

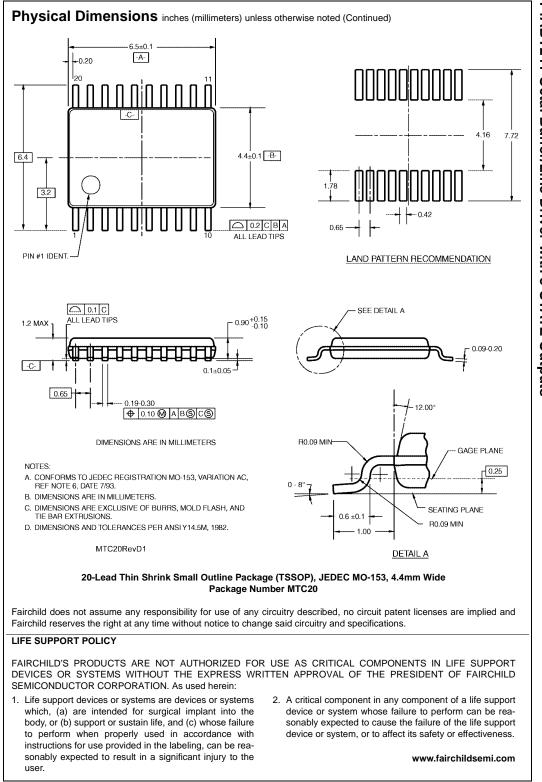
(SOIC and SSOP package)


Symbol	Parameter	$T_{A} = +25 ^{\circ}\text{C}$ $V_{CC} = +5\text{V}$ $C_{L} = 50 \text{pF}$			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V - 5.5V$ $C_L = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	1.0		4.6	1.0	4.6	50
t _{PHL}	Data to Outputs	1.0		4.6	1.0	4.6	ns
t _{PZH}	Output Enable	1.1		6.8	1.1	6.8	50
t _{PZL}	Time	1.3		6.8	1.3	6.8	ns
t _{PHZ}	Output Disable	1.6		6.8	1.6	6.8	
t _{PLZ}	Time	1.0		5.9	1.0	5.9	ns


Capacitance

Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
C _{IN}	Input Capacitance	5.0	pF	$V_{CC} = 0V$
C _{OUT} (Note 8)	Output Capacitance	9.0	pF	$V_{CC} = 5.0V$


Note 8: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.


www.fairchildsemi.com

www.fairchildsemi.com

74ABT241 Octal Buffer/Line Driver with 3-STATE Outputs

www.fairchildsemi.com