

June 2014

74LVX08 **Low Voltage Quad 2-Input AND Gate**

Features

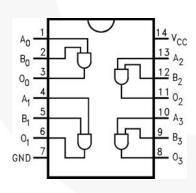
Input Voltage Level Translation from 5 V to 3 V

- Ideal for Low-power / Low-Noise 3.3 V Applications
- · Guaranteed Simultaneous Switching Noise Level and Dynamic threshold Performance

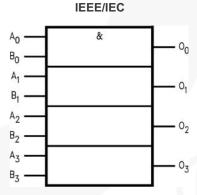
Description

The LVX08 contains four 2-input AND gates. The inputs tolerate voltages up to 7 V allowing the interface of 5 V systems to 3 V systems.

Ordering Information


Part Number	Top Mark	Package	Packing Method	Packing Description
74LVX08M	LVX08	SOIC 14L	Rail	14-Lead Small Outline Integrated Circuit, JEDEC MS-012, 0.150 inch Narrow
74LVX08MX	LVX08	SOIC 14L	Tape and Reel	14-Lead Small Outline Integrated Circuit, JEDEC MS-012, 0.150 inch Narrow
74LVX08MTCX	LVX08	TSSOP 14L	Tape and Reel	14-Lead Thin Shrink Small Outline Package, JEDEC MO-153, 4.4 mm Wide

1



All packages are lead free per JEDEC: J-STD-020B standard.

Connection Diagram

Logic Symbol

Pin Description

Pin Names	Description
A _n , B _n	Inputs
O _n	Outputs

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating			
V _{CC}	Supply Voltage		-0.5 V to 7.0 V		
I _{IK}	DC Input Diode Current, V _I = -0.5 V		-20 mA		
V _I	DC Input Voltage		-0.5 V to 7.0 V		
1	DC Output Diode Current	V _O = -0.5 V	-20 mA		
I _{OK}	De Output Diode Current	$V_{O} = V_{CC} + 0.5 \text{ V}$	+20 mA		
V _O	DC Output Voltage		-0.5 V to V _{CC} + 0.5 V		
Io	DC Output Source or Sink Current		±25 mA		
I _{CC} or I _{GND}	DC V _{CC} or Ground Current		±50 mA		
T _{STG}	Storage Temperature		-65°C to 150°C		
Р	Power Dissipation		180 mW		
T_L	Lead Temperature (Soldering, 10 seconds)	240°C			

Recommended Operating Conditions(1)

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	2.0 V to 3.6 V
VI	Input Voltage	0 V to 5.5 V
V _O	Output Voltage	0 V to V _{CC}
T_A	Operating Temperature	-40°C to 85°C
Δt / ΔV	Input Rise and Fall Time	0 ns/V to 100 ns/V

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{CC}	Conditions	T _A = 25°C			T _A = -40°C to +85°C		Unit
				Min.	Тур.	Max.	Min.	Max.	
		2.0		1.5			1.5		
V_{IH}	HIGH Level Input Voltage	3.0		2.0			2.0		V
	ronago	3.6		2.4			2.4		
		2.0				0.5		0.5	
V_{IL}	LOW Level Input Voltage	3.0				8.0		0.8	V
	ronago	3.6				8.0		0.8	
	HIGH Level Output Voltage	2.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -50 \mu A$	1.9	2.0		1.9		
V _{OH}		3.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -50 \mu\text{A}$	2.9	3.0		2.9		V
			$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -4 \text{ mA}$	2.58			2.48		
		2.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = -50 \mu\text{A}$		0.0	0.1		0.1	
V_{OL}	LOW Level Output Voltage	3.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = -50 \mu\text{A}$		0.0	0.1		0.1	V
			$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = -4 \text{ mA}$			0.36		0.44	
I _{IN}	Input Leakage Current	3.6	V _{IN} = 5.5 V or GND			±0.1		±1.0	μΑ
I _{CC}	Quiescent Supply Current	3.6	$V_{IN} = V_{CC}$ or GND			2.0		20.0	μΑ

Noise Characteristics(2)

Symbol	Parameter	V (\/)	C ₁ (pF)	T _A =	Unit	
Syllibol	Falametei	V _{CC} (V)	C [(pi)	Тур.	Limit	Oilit
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	50	0.3	0.5	V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	50	-0.3	-0.5	V
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	3.3	50		2.0	V
V _{ILD}	Maximum LOW Level Dynamic Input Voltage	3.3	50		0.8	V

Note:

2. Input $t_r = t_f = 3 \text{ ns}$

AC Electrical Characteristics

Symbol	Parameter	V _{CC} (V)	C _L (pF)	T _A = 25°C			T _A = -4 +85	Unit	
				Min.	Тур.	Max.	Min.	Max.	
		2.7	15		6.3	11.4	1.0	13.5	
			50		8.8	14.9	1.0	17.0	no
t _{PLH} , t _{PHL}	Propagation Delay Time	3.3 ± 0.3	15		4.8	7.1	1.0	8.5	ns
			50		7.3	10.6	1.0	12.0	
t _{OSLH} ,	Output to Output Skew ⁽³⁾	2.7	50			1.5		1.5	ns
toshl	Output to Output Skew .	3.3	50			1.5		1.5	115

Note:

3. Parameter guaranteed by design $t_{OSLH} = I t_{PLHm} - t_{PLHn} I$, $t_{OSHL} = I t_{PHLm} - t_{PHLn} I$.

Capacitance

Symbol	Parameter	T _A = 25°C			T _A = -40°C to +85°C		Unit
		Min.	Тур.	Max.	Min.	Max.	\
C _{IN}	Input Capacitance		4	10		10	pF
C _{PD}	Power Dissipation Capacitance ⁽⁴⁾		18				pF

Note:

4. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation: $I_{CC(opr.)} = \frac{C_{PD} \times V_{CC} \times f_{IN} \times I_{CC}}{4 \text{ (per Gate)}}$

Physical Dimensions

SOIC 14L

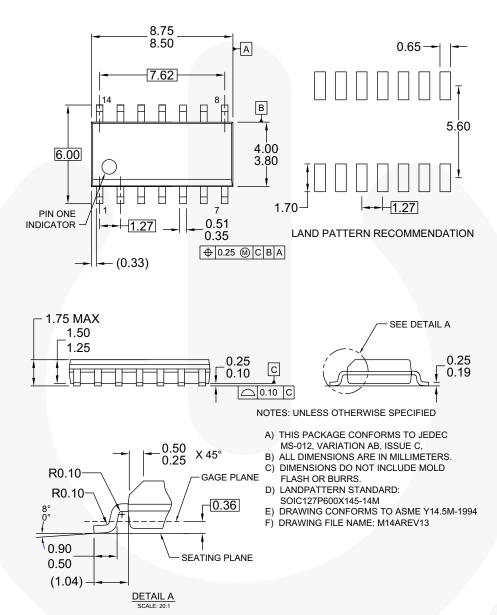


Figure 1. 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 inch Narrow

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/dwg/M1/M14A.pdf.

Physical Dimensions (Continued)

TSSOP 14L

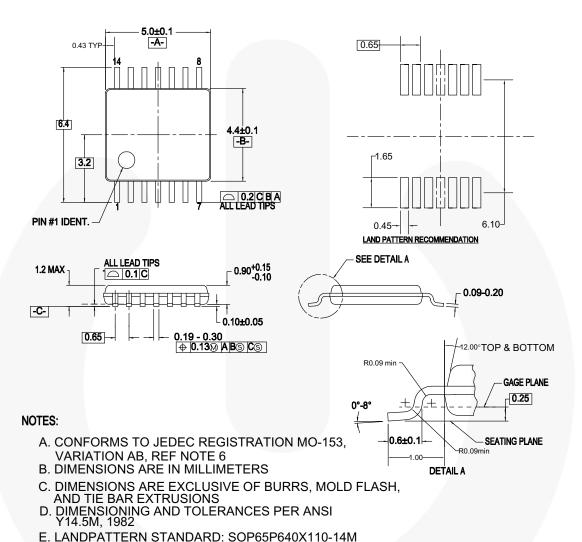


Figure 2. 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4 mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/dwg/MT/MTC14.pdf.

F. DRAWING FILE NAME: MTC14REV6

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

CTL™ GTO™
Current Transfer Logic™ IntelliMAX™
DEUXPEED® ISOPLANAR™

Dual Cool™ Making Small Speakers Sound Louder

EcoSPARK® and Better™

EfficientMax™ MegaBuck™

ESBC™ MICROCOUPLER™

MicroFET™

MicroPak™

Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™
FastvCore™
FETBench™

FAIRCHILD MIGHORING
MillerDrive™
MotionMax™
mWSaver®
OptoHITM
OPTOLOGIC®
OPTOPLANAR®

PowerTrench[®] PowerXS™

Programmable Active Droop™

QFET[®] QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

SYSTEM
GENERAL®

TinyBoost®
TinyBuck®
TinyLogic®
TinyPOPTO™
TinyPOWer™
TinyPWM™
TinyPWM™
TinyPWire™
TranSiC™
TriSaut Detect™
TRUECURRENT®*
µSerDes™

ScrDes® UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ 仙童™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN, NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. I68

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.