FAIRCHILD			January 1990	
SEMICロNDபСTロRтм				
$74 \mathrm{ACQ646}$-74ACTQ646				
Quiet Se with 3-S?	ries ${ }^{\text {TM }}$ Oct	with 3-STATE Outputs		
General De	scription		Features	
The ACQ/ACTQ6 circuits, with outpu providing multiplex input bus or from the A or B bus will be the LOW-to-HIGH (CPAB or CPBA). available are illust Figure 4. The ACQ/ACTQ ogy to guarantee dynamic threshold tures GTOTM outp addition to a split	46 consist of registe ts, D-type flip-flops, ed transmission of he internal storage re loaded into the res transition of the ap The four fundamenta ated in Figure 1, Fig tilizes Fairchild Qui quiet output switc performance. FACT ut control and und round bus for superi	ered bus transceiver , and control circuitry data directly from the registers. Data on the spective registers on appropriate clock pin tal handling functions Figure 2, Figure 3 and uiet Series ${ }^{\text {TM }}$ technolching and improved T Quiet Series ${ }^{\text {TM }}$ feadershoot corrector in rior performance.	Guaranteed sim dynamic thresh Guaranteed pin - Independent reg ■ Multiplexed real - 300 mil slim dua Outputs source - Faster prop del	aneous switching noise level and performance in skew AC performance rs for A and B busses and stored data transfers line package 24 mA han the standard AC/ACT646
Ordering Code:				
Order Number	Package Number		Package	ription
74ACQ646SC	M24B	24-Lead Small Outlin	Integrated Circuit (), JEDEC MS-013, 0.300 Wide
74ACQ464ASPC	N24C	24-Lead Plastic Dua	-Line Package (PD	JEDEC MS-001, 0.300 Wide
74ACTQ646SC	M24B	24-Lead Small Outl	Integrated Circuit (), JEDEC MS-013, 0.300 Wide
74ACTQ464ASPC	N24C	24-Lead Plastic Dua	-Line Package (PD	JEDEC MS-001, 0.300 Wide
Device also available in Tape and Reel. Specify by appending suffix letter " X " to the ordering code. Connection Diagram Pin Descriptions				
		$-\mathrm{v}_{\mathrm{cc}}$ - CPBA -sba - \bar{G} $-B_{0}$ - $_{1}$ $-B_{2}$ $-\mathrm{B}_{3}$ $-B_{4}$ $-B_{5}$ - ${ }^{8}$ - ${ }^{\theta_{7}}$	Pin Names $A_{0}-A_{7}$ $B_{0}-B_{7}$ CPAB, CPBA SAB, SBA \bar{G} DIR	Descriptions Data Register A Inputs Data Register A Outputs Data Register B Inputs Data Register B Outputs Clock Pulse Inputs Transmit/Receive Inputs Output Enable Input Direction Control Input

Logic Symbols

Function Table

Absolute Maximum Ratings（Note 2）	
Supply Voltage（ V_{CC} ）	-0.5 V to +7.0 V
DC Input Diode Current（ I_{K} ）	
$V_{1}=-0.5 \mathrm{~V}$	－20 mA
$\mathrm{V}_{1}=\mathrm{V}_{C C}+0.5 \mathrm{~V}$	＋20 mA
DC Input Voltage（ V_{l} ）	-0.5 V to $\mathrm{V}_{C C}+0.5 \mathrm{~V}$
DC Output Diode Current（ l_{OK} ）	
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	－20 mA
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	＋20 mA
DC Output Voltage（ V_{O} ）	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Source or Sink Current（ l_{O} ）	$\pm 50 \mathrm{~mA}$
DC V_{CC} or Ground Current per Output Pin（ I_{CC} or $\mathrm{I}_{\mathrm{GND}}$ ）	$\pm 50 \mathrm{~mA}$
Storage Temperature（ $\mathrm{T}_{\text {STG }}$ ）	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
DC Latch－Up Source or Sink Current	$\pm 300 \mathrm{~mA}$
Junction Temperature（ T_{J} ）	
PDIP	$140^{\circ} \mathrm{C}$

Recommended Operating Conditions

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	2.0 V to 6.0 V
ACQ	4.5 V to 5.5 V
ACTQ	0 V to V_{CC}
Input Voltage $\left(\mathrm{V}_{\mathrm{I}}\right)$	0 V to V_{CC}
Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	
Minimum Input Edge Rate $\Delta \mathrm{V} / \Delta \mathrm{t}$	
ACQ Devices	
$\mathrm{V}_{\text {IN }}$ from 30% to 70% of V_{CC}	$125 \mathrm{mV} / \mathrm{ns}$
$\mathrm{V}_{\mathrm{CC}} @ 3.0 \mathrm{~V}, 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$	
Minimum Input Edge Rate $\Delta \mathrm{V} / \Delta \mathrm{t}$	
ACTQ Devices	
$\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V	$125 \mathrm{mV} / \mathrm{ns}$
$\mathrm{V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$	

Note 2：Absolute maximum ratings are those values beyond which damage to the device may occur．The databook specifications should be met，with out exception，to ensure that the system design is reliable over its power supply，temperature，and output／input loading variables．Fairchild does no recommend operation of FACT $^{\text {M }}$ circuits outside databook specifications．

DC Electrical Characteristics for ACQ

Symbol	Parameter	V_{cc} （V）	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum HIGH Level Input Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.25 \\ 2.75 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{IL}	Maximum LOW Level Input Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.25 \\ 2.75 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum HIGH Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.99 \\ & 4.49 \\ & 5.49 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.9 \\ & 4.4 \\ & 5.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	V	l OUt $=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.85 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}(\text { Note } 3) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum LOW Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & 0.001 \\ & 0.001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	lout $=50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA} \text { (Note 3) } \end{aligned}$
$\overline{I_{\text {N }}(\text { Note 5）}}$	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ ，GND
IoLD	Minimum Dynamic Output Current（Note 4）	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
IOHD		5.5			－75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
I_{Cc} （Note 5）	Maximum Quiescent Supply Current	5.5		8.0	80.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND
Iozt	Maximum I／O Leakage Current （ $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$ Inputs）	5.5		± 0.6	± 6.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	5.0	1.1	1.5		V	Figures 5， 6 （Note 6）（Note 7）

DC Electrical Characteristics for ACQ（Continued）							
Symbol	Parameter	V_{cc} （V）	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	5.0	－0．6	－1．2		V	Figures 5， 6 （Note 6）（Note 7）
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Level Dynamic Input Voltage	5.0	3.1	3.5		V	（Note 6）（Note 8）
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Level Dynamic Input Voltage	5.0	1.9	1.5		V	（Note 6）（Note 8）

Note 4：Maximum test duration 2.0 ms ，one output loaded at a time．
Note 6：Plastic DIP package．
Note 7：Max number of outputs defined as（ n ）．Data inputs are driven OV to 5 V ．One output＠GND．
Note 8：Max number of Data Inputs（ n ）switching．（ $n-1$ ）inputs switching 0 V to 5 V （ACQ）．Input－under－test switching 5 V to threshold（ $\mathrm{V}_{\mathrm{ILD}}$ ）， OV to threshold $\left(\mathrm{V}_{\mathrm{IHD}}\right) \mathrm{f}=1 \mathrm{MHz}$ ．

DC Electrical Characteristics for ACTQ

Symbol	Parameter	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum HIGH Level Input Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum LOW Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Minimum HIGH Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	V	lout $=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}(\text { Note } 9) \end{aligned}$
V_{OL}	Maximum LOW Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\text { Note } 9) \end{aligned}$
I_{N}	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}, \mathrm{GND}$
Iozt	Maximum I／O Leakage Current （ A_{n}, B_{n} Inputs）	5.5		± 0.6	± 6.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
${ }^{\text {CCT }}$	Maximum I ${ }_{\text {cC }} /$ Input	5.5	0.6		1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}-2.1 \mathrm{~V}$
lold	Minimum Dynamic Output Current（Note 10）	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
ІОНD		5.5			－75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
${ }_{\text {ICC }}$	Maximum Quiescent Supply Current	5.5		8.0	80.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or GND } \end{aligned}$
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	5.0	1.1	1.5		V	Figures 5， 6 （Note 11）（Note 12）
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	5.0	－0．6	－1．2		V	Figures 5， 6 （Note 11）（Note 12）
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Level Dynamic Input Voltage	5.0	1.7	2.0		V	（Note 11）（Note 13）
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Level Dynamic Input Voltage	5.0	1.2	0.8		V	（Note 11）（Note 13）
Note 9：All outputs loaded；thresholds on input associated with output under test． Note 10：Maximum test duration 2.0 ms ，one output loaded at a time． Note 11：Plastic DIP Package． Note 12：Max number of outputs defined as（ n ）．Data inputs are driven 0 V to 3 V ．One output＠GND． Note 13：Max number of data inputs（ n ）switching．（ $n-1$ ）inputs switching $0 V$ to $3 V(A C T Q)$ ．Input－under－test switching： 3 V to threshold（ $\mathrm{V}_{\text {ILD }}$ ）， OV to threshold（ $\mathrm{V}_{\mathrm{IHD}}$ ）， $\mathrm{f}=1 \mathrm{MHz}$ ．							

Symbol	Parameter	V_{Cc} (V) (Note 14)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Bus to Bus	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 13.0 \\ 9.5 \end{gathered}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Bus to Bus	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 9.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 13.0 \\ 9.5 \end{gathered}$	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Clock to Bus	$\begin{aligned} & \hline 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 7.0 \end{gathered}$	$\begin{gathered} \hline 13.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 10.5 \end{aligned}$	ns
${ }_{\text {teHL }}$	Propagation Delay Clock to Bus	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 7.0 \end{gathered}$	$\begin{gathered} 13.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 10.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \text { Propagation Delay } \\ & \text { SBA or SAB to } A_{n} \text { or } B_{n} \\ & \left(w / A_{n} \text { or } B_{n} \text { HIGH or LOW }\right) \end{aligned}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & \hline 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & \text { Propagation Delay } \\ & \text { SBA or SAB to } A_{n} \text { or } B_{n} \\ & \left(w / A_{n} \text { or } B_{n} \text { HIGH or LOW }\right) \end{aligned}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \end{aligned}$	ns
$\overline{t_{\text {PZH }}}$	Enable Time \bar{G} to A_{n} or B_{n}	$\begin{aligned} & \hline 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 8.0 \\ \hline \end{gathered}$	$\begin{aligned} & 14.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 11.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PZL }}$	Enable Time \bar{G} to A_{n} or B_{n}	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 8.0 \end{gathered}$	$\begin{aligned} & 14.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 11.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PHZ }}$	$\begin{aligned} & \text { Disable Time } \\ & \overline{\mathrm{G}} \text { to } \mathrm{A}_{\mathrm{n}} \text { or } \mathrm{B}_{\mathrm{n}} \end{aligned}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.5 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.0 \end{gathered}$	ns
$\mathrm{t}_{\text {PLZ }}$	$\begin{aligned} & \text { Disable Time } \\ & \overline{\mathrm{G}} \text { to } \mathrm{A}_{\mathrm{n}} \text { or } \mathrm{B}_{\mathrm{n}} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 11.0 \\ 7.5 \\ \hline \end{gathered}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} \hline 12.0 \\ 8.0 \\ \hline \end{gathered}$	ns
$\overline{t_{\text {PZH }}}$	Enable Time DIR to A_{n} or B_{n}	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 15.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 17.0 \\ & 11.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PZL }}$	Enable Time DIR to A_{n} or B_{n}	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 15.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 17.0 \\ & 11.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PHZ }}$	Disable Time DIR to A_{n} or B_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.5 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.0 \end{gathered}$	ns
$\mathrm{t}_{\text {PLZ }}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Disable Time } \\ \text { DIR to } A_{n} \text { or } B_{n} \end{array} \\ \hline \end{array}$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 11.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 12.0 \\ 8.0 \\ \hline \end{gathered}$	ns
tos	Output to Output Skew (Note 15)	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \hline 1.5 \\ & 1.0 \end{aligned}$	ns
Note 14: Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$. Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ Note 15: Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs within the same packaged device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toshL) or LOW-to-HIGH (tosLh). Parameter guaranteed by design. Not tested. AC Operating Requirements for ACQ								
Symbol	Parameter	V_{Cc} (Note 16)		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
t_{s}	Setup Time, HIGH or LOW Bus to Clock	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$			$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$			ns
t_{H}	Hold Time, HIGH or LOW Bus to Clock				$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$			ns
t_{W}	Clock Pulse Width HIGH or LOW				$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			ns
Note 16: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$								

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests．The following is a brief description of the setup used to measure the noise characteristics of FACT．
Equipment：
Hewlett Packard Model 8180A Word Generator
PC－163A Test Fixture
Tektronics Model 7854 Oscilloscope
Procedure：
1．Verify Test Fixture Loading：Standard Load 50 pF ， 500Ω ．
2．Deskew the HFS generator so that no two channels have greater than 150 ps skew between them．This requires that the oscilloscope be deskewed first．It is important to deskew the HFS generator channels before testing．This will ensure that the outputs switch simultaneously．

3．Terminate all inputs and outputs to ensure proper load－ ing of the outputs and that the input levels are at the correct voltage．
4．Set the HFS generator to toggle all but one output at a frequency of 1 MHz ．Greater frequencies will increase DUT heating and effect the results of the measure－ ment

5．Set the HFS generator input levels at OV LOW and 3 V HIGH for ACT devices and OV LOW and 5V HIGH for AC devices．Verify levels with an oscilloscope．

FIGURE 5．Quiet Output Noise Voltage Waveforms Note 20： $\mathrm{V}_{\mathrm{OHV}}$ and $\mathrm{V}_{\text {OLP }}$ are measured with respect to ground reference． Note 21：Input pulses have the following characteristics：$f=1 \mathrm{MHz}$ ， $\mathrm{t}_{\mathrm{r}}=3 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$ ，skew＜ 150 ps ．
$\mathrm{V}_{\mathrm{OLP}} / \mathrm{V}_{\mathrm{OLV}}$ and $\mathrm{V}_{\mathrm{OHP}} / \mathrm{V}_{\mathrm{OHV}}$ ：
－Determine the quiet output pin that demonstrates the greatest noise levels．The worst case pin will usually be the furthest from the ground pin．Monitor the output volt－ ages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture．Do not use an active FET probe．
－Measure $\mathrm{V}_{\text {OLP }}$ and $\mathrm{V}_{\text {OLV }}$ on the quiet output during the worst case transition for active and enable．Measure $\mathrm{V}_{\mathrm{OHP}}$ and $\mathrm{V}_{\mathrm{OHV}}$ on the quiet output during the worst case active and enable transition．
－Verify that the GND reference recorded on the oscillo－ scope has not drifted to ensure the accuracy and repeat－ ability of the measurements．
$V_{\text {ILD }}$ and $V_{\text {IHD }}$ ：
－Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture．Do not use an active FET probe．
－First increase the input LOW voltage level， V_{IL} ，until the output begins to oscillate or steps out a min of 2 ns ． Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits，or on output HIGH levels that exceed V_{IH} limits．The input LOW voltage level at which oscillation occurs is defined as $\mathrm{V}_{\text {ILD }}$
－Next decrease the input HIGH voltage level， V_{IH} ，until the output begins to oscillate or steps out a min of 2 ns ． Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits，or on output HIGH levels that exceed V_{IH} limits．The input HIGH voltage level at which oscillation occurs is defined as $\mathrm{V}_{\mathrm{IHD}}$ ．
－Verify that the GND reference recorded on the oscillo－ scope has not drifted to ensure the accuracy and repeat－ ability of the measurements．

FIGURE 6．Simultaneous Switching Test Circuit
Physical Dimensions inches (millimeters) unless otherwise noted

